
URGENT/11 – © 2019 ARMIS, INC.

Critical vulnerabilities to remotely
compromise VxWorks, the most
popular RTOS

Ben Seri
Gregory Vishnepolsky
Dor Zusman

Introduction 3

Who we are 4

Why research RTOS network stacks? 4

Executive summary 4

Preparing the groundwork 6

Past research 6

Researching VxWorks 7

Identifying the weak points in TCP/IP implementations 8

Six critical RCE vulnerabilities discovered 9

Stack overflow in the parsing of IPv4 packets’ IP options 9

Background - ICMP error packets, IP options and Loose Source Routing 9

The vulnerability (CVE-2019-12256) 12

TCP Urgent Pointer RCE vulnerabilities 17

Background - crash course in TCP 17

TCP Urgent data explained 18

TCP in the IPnet stack 20

TCP Urgent data issues in the IPnet stack 22

TCP Urgent pointer = 0 integer underflow (CVE-2019-12255) 24

TCP Urgent Pointer state confusion caused by malformed TCP AO option (CVE-2019-12260) 25

A 5-way-handshake 29

TCP Urgent Pointer state confusion during connect() to a remote host (CVE-2019-12261) 30

TCP Urgent Pointer state confusion due to race condition (CVE-2019-12263) 31

Heap overflow in DHCP Offer/ACK parsing in VxWorks’ DHCP client (ipdhcpc) 33

Background - DHCP options 33

The vulnerability (CVE-2019-12257) 34

Five Logical errors, DoS and Information Leak vulnerabilities 36

TCP connection DoS via malformed TCP options (CVE-2019-12258) 36

Handling of unsolicited Reverse ARP replies (CVE-2019-12262) 37

Logical flaw in IPv4 assignment by the ipdhcpc DHCP client (CVE-2019-12264) 38

DoS via NULL dereference in IGMP parsing (CVE-2019-12259) 39

IGMP Information leak via IGMPv3 specific membership report (CVE-2019-12265) 39

Mitigating the risks of URGENT/11 vulnerabilities 42

Conclusion 44

URGENT/11 – ©2019 ARMIS, INC. – 2 TECHNICAL WHITE PAPER

Introduction

Armis researchers discovered 11 zero day vulnerabilities in VxWorks, the most popular real-time

operating system (RTOS), used by over 2 billion devices including mission-critical devices, such as

industrial, medical and enterprise devices. Dubbed ‘URGENT/11’, the vulnerabilities reside in IPnet,

VxWorks’ TCP/IP stack, impacting versions for the last 13 years, and are a rare example of vulnerabilities

found to affect the operating system. In its 32-year history, only 13 CVEs have been listed by MITRE as

affecting VxWorks, none of which affected the core networking stack as severely as URGENT/11 does.

Vulnerabilities in widely used implementations of TCP/IP stacks have become extremely rare in recent

years, especially those that can enable remote code execution on target devices. This type of

vulnerabilities represent the holy grail for attackers, since they do not depend on the specific application

built on top of the vulnerable stack and only require the attacker to have network access to the target

device, which makes them remotely exploitable by nature. When such vulnerabilities are found in TCP

implementations, they can even be used to bypass Firewall and NAT solutions as they hide within

innocent-looking TCP traffic.

The 11 vulnerabilities found are comprised of 6 critical vulnerabilities, that can lead to remote code

execution:

1. Stack overflow in the parsing of IPv4 packets IP options (CVE-2019-12256)

2. TCP Urgent Pointer = 0 leads to integer underflow (CVE-2019-12255)

3. TCP Urgent Pointer state confusion caused by malformed TCP AO option (CVE-2019-12260)

4. TCP Urgent Pointer state confusion during connect to a remote host (CVE-2019-12261)

5. TCP Urgent Pointer state confusion due to race condition (CVE-2019-12263)

6. Heap overflow in DHCP Offer/ACK parsing in ipdhcpc (CVE-2019-12257)

And 5 vulnerabilities that can lead to denial-of-service, logical errors or information leaks:

1. TCP connection DoS via malformed TCP options (CVE-2019-12258)

2. Handling of unsolicited Reverse ARP replies (Logical Flaw) (CVE-2019-12262)

3. Logical flaw in IPv4 assignment by the ipdhcpc DHCP client (CVE-2019-12264)

4. DoS via NULL dereference in IGMP parsing (CVE-2019-12259)

5. IGMP Information leak via IGMPv3 specific membership report (CVE-2019-12265)

This document will detail the various esoteric and somewhat forgotten mechanisms of TCP/IP that have

been found to contain vulnerabilities in VxWorks’ network stack implementation, as well as the

vulnerabilities themselves. The whitepaper will also demonstrate the severe consequences these

vulnerabilities have, affecting an extremely wide range of devices.

For more information on URGENT/11 please visit https://armis.com/urgent11

URGENT/11 – ©2019 ARMIS, INC. – 3 TECHNICAL WHITE PAPER

https://armis.com/urgent11

Who we are

Armis Labs is Armis’ research team, focused on mixing and splitting the atoms that comprise the IoT

devices that surround us - be it a smart personal assistant, a benign looking printer, a SCADA controller

or a life-supporting device such as a hospital bedside patient monitor.

Our previous research includes:

● BlueBorne - An attack vector targeting devices via RCE vulnerabilities in Bluetooth stacks used by

over 5.3 Billion devices. This research was comprised of 3 technical whitepapers:

○ BlueBorne - The dangers of Bluetooth implementations: Unveiling zero day

vulnerabilities and security flaws in modern Bluetooth stacks

○ BlueBorne on Android - Exploiting an RCE Over the Air

○ Exploiting BlueBorne in Linux-Based IoT deices

● BLEEDINGBIT - Two chip-level vulnerabilities in Texas Instruments BLE chips, embedded in

Enterprise-grade Access Points. The technical whitepaper for this research can be found here:

○ BLEEDINGBIT - The hidden attack surface within BLE chips

Why research RTOS network stacks?

In terms of raw numbers, the amount of embedded Microcontrollers and CPUs that run an RTOS is far

greater, as far as we can tell, than CPUs or devices running fully-fledged OSs.

In today's world, those embedded products and components are becoming increasingly more connected

to LANs and even directly to the Internet. Moreover, critical devices that comprise our infrastructure,

are likely to have at least some components that use an RTOS. Therefore the impact of serious

vulnerabilities in popular RTOSs is great and not well understood to date.

On top of all that, the codebases of those RTOSs are usually closed sourced, and in most cases, receive

little security research into them.

Executive summary

URGENT/11 is a set of 11 vulnerabilities found to affect IPnet, VxWorks’ TCP/IP stack. Six of the

vulnerabilities are classified as critical and enable Remote Code Execution (RCE). The remaining

vulnerabilities are classified as denial of service, information leaks or logical flaws. As each vulnerability

affects a different part of the network stack, it impacts a different set of VxWorks versions. As a group,

URGENT/11 affect VxWorks’ versions 6.5 and above with at least one RCE vulnerability affecting each

version. The wide range of affected versions spanning over the last 13 years is a rare occurrence in the

cyber arena and is the result of VxWorks’ relative obscurity in the research community. This timespan

might be even longer, as according to Wind River, three of the vulnerabilities have already existed in

IPnet when it was acquired from Interpeak in 2006.

URGENT/11 – ©2019 ARMIS, INC. – 4 TECHNICAL WHITE PAPER

https://armis.com/blueborne
http://go.armis.com/blueborne-technical-paper
http://go.armis.com/blueborne-technical-paper
http://go.armis.com/blueborne-technical-paper
http://go.armis.com/android-security-vulnerability
http://go.armis.com/android-security-vulnerability
http://go.armis.com/blueborne-linux-technical-paper-success
https://armis.com/bleedingbit
https://go.armis.com/bleedingbit

URGENT/11 enables three attack scenarios, depending on the location of the device on the network and

the attacker’s position.

The first attack scenario affects any impacted VxWorks device stationed at the perimeter of the network

and is directly exposed to the Internet such as firewalls, modems, routers. An attacker can directly

attack such devices from the Internet, compromise them and subsequently compromise the networks

they guard.

The second attack scenario affects any impacted VxWorks device stationed behind the perimeter, inside

an internal network, that connects outbound to the internet through Firewall or NAT solutions.

URGENT/11 can allow an attacker to take over such devices, by intercepting TCP connections they

create to the Internet, and manipulating certain field of the TCP header in packets that are sent back

through Firewall or NAT solutions. This is due to the vulnerabilities’ uniquely low level position inside the

parsing and handling of the TCP header.

In the last scenario, an attacker already positioned within the network as a result of a prior attack can

send a specially crafted broadcast IP packet that will hit all vulnerable VxWorks devices within the local

LAN at once. This is due to a very unique vulnerability found in the parsing and handling the IP header,

that is triggered even in broadcast. This vulnerability is also an RCE vulnerability that can lead to remote

take over.

URGENT/11 – ©2019 ARMIS, INC. – 5 TECHNICAL WHITE PAPER

Preparing the groundwork

Past research

Implementation vulnerabilities in various layers of the TCP/IP stack were relatively common in the past.

Unsurprisingly, 1990’s software and operating systems had various DoS and RCE bugs in their network

stacks. At the time, Internet connected PCs were only beginning to become popular, so even trivial bugs

(by today's standards) were to be expected. However, over the years, network stacks came under

justified scrutiny, and today such vulnerabilities are an extreme rarity.

In this research we’ve looked into a more modern and up-to-date implementation of the TCP/IP stack.

Interestingly enough, the bugs we found in our modern RTOS suffered from the same pitfalls as their

ancient counterparts.

For example, the WinNuke bug that became known in 1997, and was subsequently widely exploited,

was a remote DoS bug in Windows 95 and NT. The bug could be triggered simply by sending a single TCP

out-of-band segment (with the URG flag set) to a windows machine, resulting in a BSOD.

Actual reproduction of the WinNuke bug on Windows 95 running inside VirtualBox. The crash is in the

MSTCP VxD driver, which implements the TCP protocol.

URGENT/11 – ©2019 ARMIS, INC. – 6 TECHNICAL WHITE PAPER

https://en.wikipedia.org/wiki/WinNuke

This is remarkably similar to CVE-2019-12255 (“TCP Urgent Pointer = 0 leads to integer underflow”)

which is presented in this paper. In our case, however, the bug is classified as an RCE (memory

corruption).

An additional example of ancient TCP/IP implementation bugs was the Ping Of Death, a DoS attack that

affected many different operating systems back in the day - including Windows, Linux, Mac and Unix.

This simple attack was generated by sending an ICMP Echo request (ping) with a payload of 64KB of data

(the maximum possible payload in an IP fragmented packet). Back in 1997, this was all it took to

remotely crash a wide array of operating systems.

Surprisingly, modern examples of remotely triggerable TCP/IP bugs can still be found in the most widely

used OSs, albeit being an extremely rare occurrence. For instance, CVE-2019-0547 is an RCE in the

Windows 10 DHCP client. This bug can be triggered by malformed DHCP options, much like

CVE-2019-12257 (“Heap overflow in DHCP Offer/ACK parsing inside ipdhcpc”) that is presented in this

document.

Another example is Apple’s heap overflow bug from 2018 affecting all Apple devices and OSs, namely

CVE-2018-4407 [1][2][3]. This one is a bug in the construction of an ICMP error packet that is sent in

response to a malformed IPv4 packet with specially crafted IP options. This too is remarkably similar to

our CVE-2019-12256 (“Stack overflow in the parsing of IPv4 packets IP options”), which in our case is an

RCE.

Recent research into the TCP/IP implementation of AWS FreeRTOS (an RTOS by Amazon for IoT devices)

has also led to the discovery of many RCE bugs (CVE-2018-16522 through CVE-2018-16528).

Researching VxWorks

VxWorks is not an open source product. Wind River, the company that originally authored VxWorks, is

still updating it and selling it today. When their customer buys a license to embed the VxWorks RTOS

into their product, what they generally receive is the Wind River Workbench IDE. This IDE comes with

the VxWorks source code, and a wide variety of hardware support packages (BSPs).

In the past, it was possible to obtain a working BSP image for VMWare directly from their website, as is

described in this post. Today, it’s still possible to obtain a similar evaluation product after contacting

their sales team, however this approach is likely not useful for security researchers.

While legally obtaining the source code for research purposes is difficult, binary analysis is effective in

the case of VxWorks research. There is a multitude of real world products that run up to date versions of

VxWorks available for purchase, and their firmwares are usually freely available for download online.

Due to the nature of how the Wind River Workbench IDE produces binaries, these firmwares are

commonly shipped with ELF files containing full debug symbols, making them easy to decompile with

modern tools, arriving at high quality results.

URGENT/11 – ©2019 ARMIS, INC. – 7 TECHNICAL WHITE PAPER

https://en.wikipedia.org/wiki/Ping_of_death
https://web.archive.org/web/19981206105844/http://www.sophist.demon.co.uk/ping/
https://sensepost.com/blog/2019/analysis-of-a-1day-cve-2019-0547-and-discovery-of-a-forgotten-condition-in-the-patch-cve-2019-0726-part-1-of-2/
https://lgtm.com/blog/apple_xnu_icmp_error_CVE-2018-4407
https://lgtm.com/blog/apple_xnu_icmp_nfs_pocs
https://github.com/farisv/AppleDOS
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-put-wide-range-devices-risk-compromise-smart-homes-critical-infrastructure-systems/
https://virtuallyfun.com/wordpress/2015/10/22/you-can-run-vxworks-too/

Some of the aforementioned products also come equipped with internal UART and JTAG interfaces,

making debugging easy for a determined researcher. These qualities result in a setup that is as useful for

research purposes as the BSP image mentioned above. In case the researcher has access to any version

of the IPnet source code (from version 6.5 and above), the firmware analysis can be complemented to a

degree where the resulting material is of source code quality for any desired VxWorks version.

Identifying the weak points in TCP/IP implementations

TCP/IP vulnerabilities from the past, across many different OSs and software implementations, have

common weak points. Certain areas in the specifications have an inordinate amount of implementation

bugs. In some cases, the same exact bugs appear across completely independent implementations.

When approaching the task of discovering security issues in the VxWorks TCP/IP stack, we took the

following map of weak points as a guide. Most of the bugs we’ve found were rather non-trivial, unlike

their counterparts from the 90’s. However, all of them were somewhat related to the following parts of

TCP/IP:

● Parsing and handling of IPv4 options

○ Structure of these options can become quite complex.

○ Many IP options are considered highly esoteric, and are rarely used in practice, but are

still be parsed by the various stacks.

● Parsing and handling of TCP options

○ Similarly to the IP options, some TCP options no longer make sense on the modern

Internet, but most are still implemented in various TCP stacks.

○ For instance, the MD5 Signature Option and its rather modern successor TCP

Authentication Option (TCP-AO) have pretty much no place in a world where TLS is king.

Consequently, they are almost never used (or tested).

● ICMP error packets

○ Various error conditions in the handling of IPv4 packets, as well as the higher level TCP,

UDP and ICMP protocols, may result in the sending of ICMP error packets.

○ The structure of these error packets is non-trivial, as they sometimes contain a copy

(sometimes modified) of the original bad packets. Additionally, certain IP options affect

their handling as well.

● TCP Urgent / out-of-band data

○ Per the RFC, TCP supports sending and receiving out-of-band data, using the URG flag

and the Urgent Pointer field that exists in every TCP segment.

○ However, its exact behaviour is very poorly defined, and consequently extremely badly

implemented (more on this later).

● IP datagram fragmentation

○ IPv4 (and v6) support fragmentation of datagrams at the IP layer. A 64kb packet can be

fragmented according to the underlying MTU.

○ In practice, this feature is rarely used, thus the combination of fragmented IP packets,

with various protocols on top of IP can introduce interesting edge cases.

URGENT/11 – ©2019 ARMIS, INC. – 8 TECHNICAL WHITE PAPER

Six critical RCE vulnerabilities discovered

As mentioned above, six of the discovered vulnerabilities are of critical severity, since they are memory

corruptions that can lead to remote code execution. The six vulnerabilities were found in three separate

subsystems of VxWorks’ TCP/IP stack (IPnet):

1. One RCE vulnerability in the IP layer (CVE-2019-12256)

2. Four RCE vulnerabilities in the TCP layer (CVE-2019-12255, CVE-2019-12260, CVE-2019-12261 &

CVE-2019-12263)

3. One RCE vulnerability in the IPnet’s built-in DHCP client, ipdhcpc (CVE-2019-12257)

The following sections will provide some background on the mechanisms in which these vulnerabilities

were found, and detail the vulnerabilities themselves.

Stack overflow in the parsing of IPv4 packets’ IP options

TL;DR

When sending a malformed IP packet containing multiple Source Record Route (SRR) options to a

vulnerable VxWorks device, an ICMP error response packet is generated in response. The SRR options

are copied into the IP options of the response packet without proper length validations, which result in

an attacker controlled stack overflow.

Background - ICMP error packets, IP options and Loose Source Routing

ICMP error packets

ICMP error packets are sent as a response to an error condition that arises during the handling of an IP

packet. They are usually addressed to the source IP address of the packet. While most ICMP errors

indicate network problems, like routing loops or an inability to route to the destination IP, some arise

due to problems within the incoming (bad) packets themselves. For example, the Parameter Problem

error is sent in response to an IP packet with malformed IP options.

Many of these error packets will also contain a copy of the incoming bad packet, that triggered the

problem. This copy will contain the original IP header, the TCP or UDP header, and some additional bytes

from the payload of the packet.

URGENT/11 – ©2019 ARMIS, INC. – 9 TECHNICAL WHITE PAPER

Structure of an ICMP error packet

Some implementations fail to reconstruct these headers into the ICMP error packet correctly, due to

certain edge cases that can arise when handling malformed data.

An example of such an issue is Apple’s XNU kernel heap overflow bug from 2018 (CVE-2018-4407). An

integer underflow bug existed in the function icmp_error (bsd/netinet/ip_icmp.c:313). The bug could be

triggered if the length of the bad packet’s IP header + TCP header is more than 84 bytes. Recall that both

the IP and TCP headers have an options field, thus both can be up to 60 bytes long each.

A TCP packet with a valid 40 bytes long TCP options field, and an invalid 40 bytes long IP options field will

cause an ICMP error to be sent, and trigger the integer underflow. This, in turn, will cause a wildcopy

heap overflow. An analysis of this vulnerability is available from the author.

The use of various IP options in conjunction with an ICMP error packet that is sent in response to a

malformed packet can result in certain edge cases that may lead to bugs. But what is the actual

functionality of the IP options themselves?

IP options, and Loose Source Routing

Each IPv4 packet has a non-mandatory options field that can be up to 40 bytes long. Each separate

option appears as a TLV field (type, length, value), and all of them together must fit within the 40 bytes.

An ICMP Parameter Problem packet will be sent if an error is encountered during the parsing of these

options.

Some of the more widely known options are:

1) Time Stamp: Requests each router that forwards the packet to append its current timestamp

into the timestamp option field. The size of the entire option is set by the sender.

2) Record Route: Requests each router to append its IP into the option, effectively recording the

route a packet has taken.

3) Loose Source Route (LSRR): Instructs the routers to route the packet via a given list of IPs, and

record the route taken into the option. A longer route may be taken as long as the packet is still

routed through every IP in the list.

4) Strict Source Route (SSRR): Same as above, but the exact given route must be taken.

5) Traceroute: Requests each router to send an ICMP Traceroute packet to the source IP.

URGENT/11 – ©2019 ARMIS, INC. – 10 TECHNICAL WHITE PAPER

https://github.com/apple/darwin-xnu/blob/0a798f6738bc1db01281fc08ae024145e84df927/bsd/netinet/ip_icmp.c#L313
https://lgtm.com/blog/apple_xnu_icmp_nfs_pocs

6) Router Alert: Alerts the routers that the packet may require more extensive processing by the

routers on the way to the destination.

The infamous LSRR and SSRR options described above are known to introduce security concerns to any

router that supports them, since they enable attackers to abuse the default routing path of a packet and

force a malicious route on packets containing them. Due to this concern, they are blocked by almost all

routers by default. However, in most TCP/IP implementations, these rather complex options are still

parsed before they are blocked, presenting an additional attack surface nonetheless.

Every LSRR\SSRR option has the following structure:

The code, length and pointer fields are 1-byte wide. The IP addresses are 4 bytes each

The option contains a list of IP addresses through which the packet should be routed (either strictly or

loosely). The Pointer is an offset within the option to the next IP address that the packet should be

routed through, and it is incremented by each router through which the packet traverses.

According to RFC1122, once the packet has reached its destination, the IP list in the option needs to be

recorded and passed up to the transport layer or to ICMP message processing. This recorded route will

be reversed and used to form a return source route for reply datagrams, or for ICMP error messages

sent back to the sender.

This logic can be carried with the following copying logic:

● All the IP addresses up to, but not including, the address prior to where Pointer points to are

copied in reverse order.

● The source IP of the packet is added to the end of the list instead of the not-included address.

The logic of both a router that supports source routing options, and of a host that supports receiving

packets that contain them is complex. The Parsing process of such options is thus also subject to

potential bugs.

URGENT/11 – ©2019 ARMIS, INC. – 11 TECHNICAL WHITE PAPER

https://tools.ietf.org/html/rfc1122#page-36

An example LSRR option from Wireshark:

Wireshark capture of an IP packet with an LSRR option

The support for a device to act as a host of source routing, as described in RFC1122, is almost never

implemented in practice. However, in VxWorks this support exists for some reason, introducing the

attack surface for the following vulnerability.

The vulnerability (CVE-2019-12256)

In VxWorks’ IPnet stack the IPv4 protocol is implemented in the module ipnet2/src/ipnet_ip4.c. The

function ipnet_ip4_input is the entry point for incoming IPv4 packets. This function first performs basic

validation of the header, and then calls ipnet_dst_cache_get. This performs a lookup for a handler

callback, according to the source and destination IP addresses of the packet. For instance, if the

destination address matches the local address, the ipnet_ip4_local_rx handler will be called. Otherwise

the packet may be forwarded (routed), or perhaps a Destination Unreachable condition may be

triggered.

Certain error conditions, such as Destination Unreachable will trigger an ICMP error packet to be sent by

calling ipnet_icmp4_send. This function will also be called when an error occurs due to malformed IP

options, and an ICMP Parameter Problem packet will be sent. This can occur through multiple stages in

which the IP options are being parsed: in ipnet_ip4_multiple_srr_opt_check, which validates that only

one instance of either LSRR or SSRR options exists in the option field, or in any of the various option

parsing functions - ipnet_ip4_opt_*_rx. Inside ipnet_icmp4_send, an error packet is constructed, and

certain options fields from the incoming (malformed) packet are copied. This is done by the

ipnet_icmp4_copyopts function. The above flows are illustrated below:

URGENT/11 – ©2019 ARMIS, INC. – 12 TECHNICAL WHITE PAPER

IPv4 packet handling flow chart, with calls to the ICMP error sending function

As shown above, while parsing incoming IPv4 packets, various code flows can lead to ICMP messages

being sent in response to erroneous (malformed) packets. The ipnet_icmp4_send function will be used

to send the response ICMP packets, and it will attempt to copy certain IP options from the incoming

packet onto the outgoing packet with the function ipnet_icmp4_copyopts. In at least two code flows, the

outgoing ICMP packet will be sent before the incoming packet is fully parsed, and the incoming IP

options are fully validated to be legal, or even despite them failing validation already. This design flaw

can lead to a stack overflow in the context of this ipnet_icmp4_send.

This vulnerability exists since VxWorks version 6.9.3.

Two distinct flows can lead to this vulnerability:

1. A packet that is sent to the target’s MAC address, but with a destination IP address that is not a

unicast address of the target, and is unreachable for it, which would result in a call to

ipnet_ip4_dst_unreachable.
2. A normal unicast packet that is directed to the target with both its MAC and IP addresses. This

will occur in the ipnet_ip4_multiple_srr_opt_check function.

The first flow happens in ipnet_ip4_input, when the destination IP of the incoming packet is unreachable

according to ipnet_dst_cache_new’s return value, which indicates how the packet should be routed:

URGENT/11 – ©2019 ARMIS, INC. – 13 TECHNICAL WHITE PAPER

 return_code = ipnet_dst_cache_new(&v37, ipnet_ip4_dst_cache_rx_ctor, &v45);
 if (return_code < 0)
 {

 return_code = -1 * return_code;
 // If dst is unreachable (EHOSTUNREACH, ENETUNREACH or EACCES)
 if (return_code == 51 || return_code == 65 || return_code == 13)
 {

 ipnet_ip4_dst_unreachable(packet, return_code);

Decompiled snippet from ipnet_ip4_input

The function ipnet_ip4_dst_unreachable will then call ipnet_icmp4_send and attach the original packet

to the icmp_param struct. In ipnet_icmp4_send, the IP options from the failing (incoming) packet will be

referenced by a structure that will be passed to ipnet_icmp4_copyopts:

struct Ipnet_copyopts_param
{
 void *options_ptr;
 int total_opt_size;
 int which_opts_to_copy;
};

int ipnet_icmp4_send(Ipnet_icmp_param *icmp_param, Ip_bool is_igmp)
{
 Ipnet_icmp_param *icmp_param;
 Ipcom_pkt *failing_pkt;
 struct Ipnet_copyopts_param options_to_copy;
 struct Ipnet_ip4_sock_opts opts;
 ...
 options_to_copy.options_ptr = NULL;
 options_to_copy.total_opt_size = 0;
 // By default, copy SSRR and LSRR options.
 options_to_copy.which_opts_to_copy = 0x208;
 ...
 if (!is_igmp)
 {
 if (icmp_param->type == IPNET_ICMP4_TYPE_DST_UNREACHABLE ||
 icmp_param->type == IPNET_ICMP4_TYPE_PARAMPROB ||
 ...) {

 failing_pkt = icmp_param->recv_pkt;
 ...
 ip_hdr = failing_pkt->data[icmp_param->recv_pkt->ipstart];
 ...
 options_to_copy.total_opt_size = 4 * (*ip_hdr & 0xF) - 20;
 if (options_to_copy.total_opt_size)
 options_to_copy.options_ptr = ip_hdr + 20;
 ...
 }
 }
 ...

URGENT/11 – ©2019 ARMIS, INC. – 14 TECHNICAL WHITE PAPER

 ipnet_icmp4_copyopts(icmp_param, &options_to_copy, &opts, &ip4_info);
 ...
}

Decompiled snippet from ipnet_icmp4_send

By default, the options_to_copy structure will instruct ipnet_icmp4_copyopts to copy the SSRR and LSRR

options from the failing packet to the output packet. When the failing packet hasn’t been validated to

contain valid IP options (as with the above flow), the ipnet_icmp4_copyopts function may be coerced

into copying multiple SSRR or LSRR options from the failing packet onto the opts structure that is

allocated on the stack of ipnet_icmp4_send. Additionally, these copied options might contain illegal

structures that should otherwise have not been allowed. For example, when sending an IP packet that

contains the following bytes in the IP options field, a stack overflow will occur:

Type (LSRR) Length LSRR-Pointer Type (LSRR) Length LSRR-Pointer

\x83 \x03 \x27 \x83 \x03 \x27

In this example, two LSRR option are contained in the IP options field. These LSRR options don’t contain

any routing entries (each option length is only 3 bytes) and the SRR-Pointer field points past the end of

the option. As described previously, a host that receives an SRR option needs to take all the recorded

routing entries, reverse their order, and use it to create a new SRR option that will be added to any

returned packet. This functionality can be viewed in ipnet_icmp4_copyopts:

int ipnet_icmp4_copyopts(Ipnet_icmp_param *icmp_param,

 struct Ipnet_copyopts_param *copyopts_param,

 struct Ipnet_ip4_sock_opts *opts, void *ip4_info)

{

 ...
 while (1) {
 current_opt = ipnet_ip4_get_ip_opt_next(current_opt,
 copyopts_param->options_ptr,
 copyopts_param->total_opt_size);
 if (!current_opt)
 break;
 opt_type = *current_opt;
 if (copyopts_param->which_opts_to_copy & (1 << (opt_type & 31)))
 {

 ...
 if (opt_type == 0x83 || opt_type == 0x89) {
 // IP_IPOPT_LSRR or IP_IPOPT_SSRR

 srr_ptr_offset = 39;
 srr_opt = (srr_opt_t *)&opts->opts[opts->len];
 // Limits max ptr offset to 39,
 // (but doesn't validate this offset is within the current option)

URGENT/11 – ©2019 ARMIS, INC. – 15 TECHNICAL WHITE PAPER

 if ((int)current_opt[2] <= 39)
 srr_ptr_offset = current_opt[2];
 offset_to_current_route_entry = srr_ptr_offset - 5;
 ...

 srr_opt->type = opt_type;
 current_route_entry = ¤t_opt[offset_to_current_route_entry];
 srr_opt->length = 3;
 srr_opt->route_ptr = 4;
 while (offset_to_current_route_entry > 0) {
 memcpy((char *)srr_opt + srr_opt->length, current_route_entry, 4);
 current_route_entry -= 4;
 offset_to_current_route_entry -= 4;
 srr_opt->length += 4;
 }

 memcpy((char *)srr_opt + srr_opt->length, &icmp_param->to, 4);
 srr_opt->length += 4;
 total_opts_len = opts->len + srr_opt->length;
 }

 }

 }

 ...

}

Decompilation output from a binary image, inside ipnet_icmp4_copyopts

The code in ipnet_icmp4_copyopts will use these SRR-Pointer fields as the offset to the final route entry

in an SRR option, and copy all the routing entries up to it to the outgoing packet options opts, which is

allocated on the stack of ipnet_icmp4_send. Each LSRR option in the input buffer is 3 bytes long, but it

would generate a copied-out option of 43 bytes (3 bytes header, 36 bytes of routing entries, 4 bytes of a

new routing entry for the current route). Since there is no validation (in this context) that the failing

packet doesn’t contain more than one SSRR\LSRR option, sending multiple options of this type will result

in the overflow of opts which is a 40 bytes array allocated on stack.

As noted above, this vulnerability can also be triggered by another flow, when a packet containing the

above options is sent directly to the target device, without resulting in a destination unreachable

condition. This is due to the fact that when the option parsing process fails in various ipnet_opt_*_rx

functions, or in the ipnet_ip4_multiple_srr_opt_check function, an ICMP error message is sent in

response (via ipnet_ip4_opt_icmp_param_prob). When this occurs, the remaining options that weren’t

parsed by these validation functions can still contain illegal values, such as the multiple SRR options

presented above, which would lead to the mentioned stack overflow. Since the overflow will contain

attacker-controlled data from the input packet, this vulnerability can lead to remote code execution in

both flows.

Luckily, because the vulnerability depends on sending packets with invalid IP options, it can not be

exploited over the Internet. The first router that encounters the packet will drop it. Therefore, the

vulnerability is only exploitable by an attacker on the LAN.

URGENT/11 – ©2019 ARMIS, INC. – 16 TECHNICAL WHITE PAPER

Since this vulnerability is in the parsing of the IP header itself, it can also be triggered by sending a

specially crafted IP packet with the invalid IP options in a broadcast packet. This can allow an attacker to

target multiple vulnerable devices simultaneously.

TCP Urgent Pointer RCE vulnerabilities

TL;DR

TCP has an esoteric mechanism to transfer out-of-bounds data named Urgent Data. By exploiting this

mechanism, an attacker can underflow the length variable passed to recv() system calls, which will result

in attacker-controlled overflow of the buffer passed to recv(). This can lead to overflow of a buffer

allocated either in stack, heap, or global data section, which can lead to remote code execution.

Background - crash course in TCP

To understand the discovered vulnerabilities in IPnet’s implementation of TCP, a quick crash course in

TCP is required. TCP is a transport layer protocol that allows the transfer of an ordered stream of bytes

over the unreliable IP layer. Explaining how the TCP protocol works, even at a cursory level, is well

beyond the scope of this document. However, some particulars must be explained to understand the

vulnerabilities described below.

Each packet sent over the IP layer as part of a TCP session is called a segment. Below is an illustration for

the structure of a segment:

Each TCP segment is considered part of a particular TCP session according to its 4-tuple of

source/destination IP and source/destination Port.

Each segment has a Sequence Number field, that allows the receiving endpoint to determine where the

included data is supposed to appear in the stream.

URGENT/11 – ©2019 ARMIS, INC. – 17 TECHNICAL WHITE PAPER

● The first packet of a TCP connection that was received by the endpoint contains the Initial

Sequence Number (ISN). This segment must have the SYN flag set.

● Subtracting the ISN from all other Sequence numbers received by that endpoint as part of the

session provides the offset of the included data within the stream

The TCP/IP stack of each endpoint holds a buffer called the TCP Window, that contains all data that was

received as part of the session, but not yet handled by the user of the socket. Data is pulled out of the

TCP window buffer when the user calls the recv() system call on the socket. Data is inserted whenever a

new (non-duplicate) TCP segment arrives.

The next in-order Sequence Number is kept for the window, and data can only be recv()’d by the user if

it’s located before that offset in the stream. Therefore, the user will only ever read in-order data.

In-order data Hole Out-of-order data

 ^ next in-order sequence number

A new segment that arrives may complement previous out-of-order data in the window, and thus make

some (or all) of this data in-order. Therefore, the next in-order Sequence Number will then be adjusted

to reflect this, and the user may now recv() the data.

TCP Urgent data explained

A lesser-known feature of TCP enables sending and receiving Urgent or Out of Band data over an existing

TCP connection. This feature was designed to solve problems that arise during situations similar to the

following use case:

1) A client sends instructions to a server over a TCP connection asynchronously. That is, without

waiting for one to be finished before sending the next.

2) The server reads an instruction from its TCP window, and executes it, repeating for every

instruction. However, before all instructions were handled by the server, the client decides to

cancel the remaining instructions.

With just one stream of data, it’s not possible to notify the server of any new requests before all

previous requests have finished processing. In modern layer 7 protocols, this issue is solved by explicitly

using more than one stream of data. TCP, however, provides a method to send this Urgent data over the

same established layer 4 connection.

Almost all modern OSs provide a standard MSG_OOB flag that can be passed to the send/recv system

calls to send and receive this out-of-band (OOB) data over a TCP socket. A buffer sent as OOB data will

not be received by a regular recv() call (that only receives ordered data), and a recv() call with the

MSG_OOB flag set will only receive this OOB data.

At the TCP segment level, this feature is implemented by an URG flag and an Urgent Pointer field that

exists in every segment. If the URG flag is set, the Urgent Pointer indicates the offset in the stream (from

URGENT/11 – ©2019 ARMIS, INC. – 18 TECHNICAL WHITE PAPER

the relative Sequence Number) where the urgent data is located. Usually the urgent data itself will also

appear in that same segment.

This sounds simple enough, however the exact meaning of the Urgent Pointer is not well defined - it is

unclear whether it points to the last byte of the ordered data, or the first byte of the urgent data. In

addition, it is unclear how one can define the length of the urgent data, having only a pointer that

indicates where it starts, but not where it ends.

Multiple RFCs dating back to the early 1980s have produced contradicting answers to these questions:

RFC 793 (1981, page 17) states:

The urgent pointer points to the sequence number of the octet following the urgent data.

However, RFC 1011 (1987, page 8) states:

Page 17 is wrong. The urgent pointer points to the last octet of urgent data (not to the first octet of

non-urgent data).

And RFC 1122 (1989, page 84) reinforces this approach:

..the urgent pointer points to the sequence number of the LAST octet (not LAST+1) in a sequence of

urgent data.

Finally, the latest RFC to handle this issue (RFC 6093 [2011, pages 6-7]) concludes:

Considering that as long as both the TCP sender and the TCP receiver implement the same semantics

for the Urgent Pointer there is no functional difference in having the Urgent Pointer point to ‘the

sequence number of the octet following the urgent data’ vs. ‘the last octet of urgent data’, and that all

known implementations interpret the semantics of the Urgent Pointer as pointing to ‘the sequence

number of the octet following the urgent data’.

So since virtually all existing TCP implementations handle the urgent pointer as the sequence number of

the octet following the urgent data, this should be the default behavior of all stacks going forward.

As to the length of the urgent data, RFC 6093 (page 5) also states this:

If successive indications of ‘urgent data’ are received before the application reads the pending

‘out-of-band’ byte, that pending byte will be discarded (i.e., overwritten by the new byte of ‘urgent

data’).

Concluding that the urgent data should always be one octet (byte).

Due to the various intricacies of the Urgent Pointer mechanism, some implementations (VxWorks

included) were forced to support an RFC-1122 compatible mode, and a non-compatible mode - where

the Urgent Data would either point ±1 of the calculated urgent pointer.

URGENT/11 – ©2019 ARMIS, INC. – 19 TECHNICAL WHITE PAPER

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc1011
https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc6093
https://tools.ietf.org/html/rfc6093

This, combined with the fact that the whole feature itself is esoteric, resulted in it being poorly

implemented and tested by the various OSs. For example, the Windows NT/95 WinNuke bug described

earlier in this document was triggerable simply by sending any OOB data to the machine, as it was

always mis-handled by the TCP driver resulting in a blue screen of death.

TCP in the IPnet stack

In VxWorks’ IPnet stack the TCP protocol is implemented in iptcp/src/iptcp.c. Each TCP segment received

by the stack is processed by iptcp_input:

int __cdecl iptcp_input(int a1, int a2, int (__cdecl *socklookup)(...))

{

 ...
 // Lookup the TCP socket based on the incoming 4-tuple
 // (This would match the TCP listening socket, for a SYN on new 4-tuple)
 sock = socklookup(...);
 ...

 // If the packet matched a listening socket, create a new socket using it's 4-tuple
 if (sock->tcb->flags & 1)
 sock = iptcp_handle_passive_open(...);
 ...

 // Process TCP options (this might lead to CVE-2019-12260 or CVE-2019-12259)

 if (iptcp_process_options(...) < 0) {

 iptcp_send_reset(...);
 return 0;
 }

 return_code = iptcp_deliver(...);
 ...

}

Simplified decompilation of iptcp_input

The function iptcp_input tries to match every incoming segment to an existing TCP socket, using the

socklookup callback. A segment may also match a listening socket, if the 4-tuple doesn’t match an

existing socket, but the destination IP and port do match those of a bound listening socket. In this case,

an additional call to iptcp_handle_passive_open performs extra logic, ending up with the creation of a

new client socket for this connection, that does match the 4-tuple. This socket then becomes the new

matched socket from that point on. All validations of the first SYN packet are done by

iptcp_handle_passive_open, for example - drop any SYN packet that is also a FIN.

After some additional checks, the segment is passed on to iptcp_deliver, which handles a segment in the

context of a TCP socket (tcb):

URGENT/11 – ©2019 ARMIS, INC. – 20 TECHNICAL WHITE PAPER

int __fastcall iptcp_deliver(_DWORD *a1)

{

 if (tcb->state == 2) { // LISTEN_STATE
 result = iptcp_deliver_state_listen(...);
 } else if (tcb->state == 3) { // SYN_SENT_STATE
 result = iptcp_deliver_state_syn_sent(...);
 } else {
 result = iptcp_deliver_state_syn_rcvd_or_higher(...);
 }

 ...

 if (pkt->flags & 0x2000) { // Check if URG flag in TCP pkt

 tcb->urg_ptr = p->seg.seq_start + htons(pkt->urg_ptr);
 tcb->flags |= 0x80000; // TCB_STATE_URG_RECEIVED
 ...

 }

 if (pkt->flags & 0x100) { // Check if FIN flag in TCP pkt
 ...

 // Handle the FIN bit, depending on the current TCB state

 switch (tcb->state) {
 ...

 default:
 return -22;
 }

 }

 // Process the segment data
 result = iptcp_deliver_data(v2);
 if (tcb->state != newState) {
 // If the state has changed, apply it to the tcb
 ...

 result = iptcp_change_state(tcb->sock, newState);
 }

 ...

}

Simplified decompilation of iptcp_deliver

First, this function checks the state of the socket. If it was just created, the first segment will be handled

by iptcp_deliver_state_listen or iptcp_deliver_state_syn_sent in a special way. The Initial Sequence

Number from the peer will initialize tcb->recv.seq_next, which is the next in-order sequence number for

this socket. After additional handling, such as handling the URG and FIN flags, the segment may be

passed into iptcp_deliver_data. This is where the TCP window is managed. Once in-order data becomes

available, it will eventually be appended to the sock->rcv_tail list, which is the list recv() calls pull data

from. An overview of the flow, starting at the iptcp_input function, and ending in a user application

calling recv(), looks like this:

URGENT/11 – ©2019 ARMIS, INC. – 21 TECHNICAL WHITE PAPER

Call flow from TCP segments to recv calls

From the userland code, a call to recv() will use iptcp_usr_get_from_recv_queue to pull data from the

sock->rcv_tail queue. Prior to that, however, this function also handles any Urgent Data that has been

received as well, accessing the state variable tcb->recv.urg_ptr. As seen in the decompilation snippet

above, this state variable is updated in iptcp_deliver each time a segment with an URG flag is received.

TCP Urgent data issues in the IPnet stack

When iptcp_deliver receives a segment with the URG flag set, the FLAG_RECEIVER_URG flag in tcb->flags

is set and the tcb->recv.urg_ptr value is calculated as the offset in the TCP window where the urgent

data begins. Later, this value is used by iptcp_usr_get_from_recv_queue when called from a recv() call.

This value is important for all recv calls and not just for MSB_OOB calls, as any Urgent Data present in

the segment must not be returned from a regular recv call. Therefore, this value is used to know which

bytes to drop from the returned buffer. Below is the code responsible for this flow:

URGENT/11 – ©2019 ARMIS, INC. – 22 TECHNICAL WHITE PAPER

// Urgent Data is present, but not requested with the MSG_OOB flag

if ((int32)(tcb->recv.urg_ptr - len +
 tcb->recv.seq_next - sock->ipcom.rcv_bytes) <= 0)

{

 // Calculate the urgent data offset inside the window, in order to
 // copy data up to, but not including the urgent data

 len = tcb->recv.urg_ptr - 1 - tcb->recv.seq_next + sock->ipcom.rcv_bytes;
}

Simplified decompilation, from iptcp_usr_get_from_recv_queue

when handling a regular recv() with URG data present

This code changes the len variable in case Urgent Data was inserted into the TCP window so that the

current recv() call is affected. As illustrated:

Data that should be received Urgent data Other data in the window

 ^ requested len

The recv() call requested a read of size len, but this would include the Urgent Data

The purpose of the code above is to shorten the len in this case, so that the user receives less data than

requested, without any OOB data that was not requested:

Data that should be received Urgent data Other data in the window

 ^ modified len

We’ll henceforth refer to the above len shortening calculation as the urgent data offset calculation.

As mentioned earlier, due to the various intricacies of the Urgent Pointer mechanism, VxWorks includes

a RFC-1122 compatible mode, and a non-compatible mode - where the Urgent Data points to ±1 of the

calculated urgent pointer. However, by default, VxWorks doesn’t support RFC-1122 compatible mode,

thus the above urgent data offset calculation subtracts 1 from the tcb->recv.urg_ptr to calculate where

the Urgent Data starts.

All of the 3 state variables referenced in the code above are unsigned 32 bit integers, as is the len

variable to which the above calculation is written to. We have discovered 4 different vulnerabilities, in

various code flows, all eventually cause the calculation of the urgent data offset to underflow causing

the len variable to become a huge unsigned integer.

The first of these vulnerabilities (Urgent Pointer = 0) results in an off-by-one calculation, and the other

three variants are caused by various state confusion states that lead the tcb->recv.urg_ptr and

tcb->recv.seq_next variables to be in an inconsistent state with one another. The urgent data offset

calculation works under the assumption that the Urgent Pointer (tcb->recv.urg_ptr) is always in front of

the sequence number that the TCP window begins with, calculated by tcb->recv.seq_next -

URGENT/11 – ©2019 ARMIS, INC. – 23 TECHNICAL WHITE PAPER

sock->ipcom.rcv_bytes. Once this assumption breaks, the calculation can result in an integer underflow,

and len will become a huge unsigned integer.

Since len is the limitation passed by the user to a recv() call, this effectively allows an attacker to disable

the length check altogether. This renders any userspace code using recv on a TCP socket vulnerable to

an overflow of the local receive buffer. For example:

char buf = 0;
...

recv(socket_fd, &buf, 1);

This usually safe code that receives only 1 byte into a stack variable now becomes a stack overflow. The

overflow length is controlled by the attacker, that chooses how much data to put into the TCP window.
Despite the len becoming a huge number, the amount of data actually written will still be limited by the

amount of data available in the window. So, as long as the buffer passed to recv() is smaller than the TCP

window of the established connection, an overflow will occur. The buffer passed to recv() may be

allocated either in the stack, heap or the application’s global data section which means an overflow of

this buffer will result in varying effects once triggered. The exploitation process of such an overflow will

have to vary accordingly.

Each of the discovered Urgent Pointer vulnerabilities affects a different set of VxWorks’ versions, but

combined they span from version 6.5 and above. The following sections will detail the four different

code flows in which the above overflow can be triggered.

TCP Urgent pointer = 0 integer underflow (CVE-2019-12255)

As shown previously, a TCP connection’s Urgent Pointer is set in the variable tcb->recv.urg_ptr in a code

flow inside iptcp_deliver. In VxWorks’ versions 6.9.3 and below this code flow looks like this:

 if (pkt->flags & 0x2000) { // Check if URG flag in TCP pkt

 tcb->urg_ptr = p->seg.seq_start + htons(pkt->urg_ptr);
 tcb->flags |= 0x80000; // TCB_STATE_URG_RECEIVED
 ...

 }

If the urgent_pointer field in the received TCP segment header is set to 0, tcb->recv.urg_ptr will be equal

to p->seg.seq_start, which is the Sequence Number of the received segment. Then, when the user of the

socket will perform a recv() operation on the socket, the code presented in the section above (inside

iptcp_usr_get_from_recv_queue) will be triggered.

The condition of the if in the function iptcp_usr_get_from_recv_queue shown in the section above can

thus be re-written by substituting for equivalent values:

URGENT/11 – ©2019 ARMIS, INC. – 24 TECHNICAL WHITE PAPER

(int32)(tcb->recv.urg_ptr - len + tcb->recv.seq_next - sock->ipcom.rcv_bytes) <= 0
⇔ (int32)(p->seg.seq_start + 0 - len - p->seg.seq_start) <= 0
⇔ (int32)(0 - len) <= 0

Note that p->seg.seq_start equals tcb->recv.seq_next - sock->ipcom.rcv_bytes for the last received

segment. Therefore this condition is always true when the urgent_pointer was set to 0 in the last

received segment. Then, len is supposed to be shortened by the urgent data offset calculation (as

mentioned in the above section), however:

 tcb->recv.urg_ptr - 1 - tcb->recv.seq_next + sock->ipcom.rcv_bytes
⇔ p->seg.seq_start - 1 - (p->seg.seq_start)
⇔ -1

The function tries to evaluate the offset to an Urgent Data that is out of bounds (0), which results in -1.

Since len is an unsigned integer, this means it will now equal 0xffffffff. As mentioned above, this causes

the length constraint set by the user in the recv() call to be ignored, resulting in turn in a copy of all the

available data from the TCP window to the user supplied buffer.

In VxWorks’ version 6.9.4 an additional validation on the Urgent Pointer was added in iptcp_deliver:

 if (flags & 0x2000) { // Check if URG flag in packet
 tcb_flags = tcb->flags;
 if (tcb_flags & 0x80000) { // Check if URG was already received
 ...
 } else {
 urgent_pointer = input_tcp_header->urgent_pointer;
 error_retval = 1;
 if (!urgent_pointer)
 return error_retval;

Decompilation snippet from iptcp_deliver

This fixes exactly the issue detailed above, preventing urgent_pointer from being set to 0. However,

unfortunately, this change was not considered as a security fix, and wasn’t backported to prior versions

of VxWorks. All real world products we’ve examined, that were running versions of VxWorks 6.9.3 or

prior, were vulnerable to this vulnerability.

TCP Urgent Pointer state confusion caused by malformed TCP AO option (CVE-2019-12260)

While the Urgent Pointer = 0 bug from above was fixed since VxWorks version 6.9.3, the iptcp.c module

had undergone other refactoring in the meantime. Some of the new features that were added, like the

handling of a new AO TCP option, introduced even deeper bugs to the code.

In VxWorks versions above 6.9.3, support for the TCP AO option (Authentication Option, RFC-5925) was

added. This appears to be included by default, and is indeed supported by the VxWorks images of

URGENT/11 – ©2019 ARMIS, INC. – 25 TECHNICAL WHITE PAPER

products we’ve examined. The vulnerability presented below does not depend on the TCP AO to be

actually enabled or used, since it is always parsed by the TCP module.

The following flow will occur inside iptcp_input for an incoming SYN packet from a client that is

establishing a new connection:

 ...
 new_client_sock = iptcp_handle_passive_open(src_ip, dst_ip, ¶ms);
 ...
 tcb = new_client_sock->tcb;
 ...
 tcp_options_size = ((tcp_segment_offset_flags & 0xF0) >> 2) - 20;
 tcp_options_ptr = &tcp_header_ptr[1];
 if (tcp_options_size > 0)
 {
 index = 0;
 while (1)
 {
 opt_ptr = &tcp_options_ptr[index];
 opt_kind = *opt_ptr;
 ...
 }
 if (opt_kind == TCP_OPTION_AO)
 {
 opt_len = opt_ptr[1];
 if (opt_len <= 3u)
 {
 iptcp_ao_log(6, "discard the segment since TCP-AO...", ...);
 goto FreeAndExit;
...
FreeAndExit:
...
 ipcom_pkt_free(pkt);
 return 0;

Snippet from a decompilation output from a binary image, inside iptcp_input

The support for the TCP AO option was added to the familiar iptcp_input resulting in some changes to

the function. The function iptcp_handle_passive_open will be called when a SYN arrives on a listening

socket, and a new socket object will be created for the incoming connection. This socket will now be

added to the destination cache, so that it will match any new TCP segment arriving from the same TCP

connection 4-tuple (IP src/dst and Port src/dst). Immediately thereafter the code will look for an AO

Option (TCP_OPTION_AO) in the TCP option header and attempt to parse it if found.

Now, assume an attacker added a malformed TCP_OPTION_AO option to that very first SYN packet, like

some 1 byte value for the option - which is too short, per the condition opt_len <= 3. The check will fail,

and iptcp_input will simply drop the packet and return. However, the new socket that was created by

iptcp_handle_passive_open will not be destroyed.

URGENT/11 – ©2019 ARMIS, INC. – 26 TECHNICAL WHITE PAPER

At this point, a socket object that will match any incoming TCP segment on the connection’s 4-tuple still

exists, however, since the SYN packet was not fully processed the new socket will remain in the default

LISTEN_STATE state. Now an attacker can send a new (#2) SYN packet, which will not be processed by

iptcp_handle_passive_open, since it arrived to an already existing client socket (and not to the listening

socket). Since iptcp_handle_passive_open doesn’t process this new SYN packet, the following validations

are not performed by it:

if ((p->seg.flags_n & TCP_SYN_FLAG) == 0) ||
 (p->seg.flags_n & (TCP_FIN_FLAG | TCP_URG_FLAG | TCP_PSH_FLAG)) != 0) {
 // Validate that SYN packet doesn’t have FIN, URG, or PSH flags turned on.
 ...
 return 0;

Validations of initial SYN packet, done in iptcp_handle_passive_open

Now assume that the attacker has set the flags URG and FIN together with SYN in this new (#2) SYN

packet. This new packet will bypass the checks above as an otherwise valid packet, continue the flow

and arrive to iptcp_deliver. In there it will be handled according to the tcb state:

 if (tcb->state == 2) { // LISTEN_STATE
 result = iptcp_deliver_state_listen(...);
 } else if ...

Following this, the function iptcp_process_syn will be called by iptcp_deliver_state_listen, performing

the following:

 tcb->recv.seq_next = p->seg.seq_start;

The recv.seq_next of the socket will now be set to the Initial Sequence Number chosen by the attacker in

this SYN/URG/FIN (#2) packet. Let that number be denoted as sequence_a.

The flow continues in iptcp_deliver, and immediately enters this (familiar) flow:

 if (pkt->flags & 0x2000) { // Check if URG flag in TCP pkt

 tcb->urg_ptr = p->seg.seq_start + htons(pkt->urg_ptr);
 tcb->flags |= 0x80000; // TCB_STATE_URG_RECEIVED
 ...

 }

Therefore, assuming tcp_hdr->urgent_pointer = 1 (a valid non-zero value), the variable tcb->recv.urg_ptr

is assigned the value p->seg.seq_start + 1 = sequence_a + 1.

The flow continues in iptcp_deliver, but immediately encounters the following check:

URGENT/11 – ©2019 ARMIS, INC. – 27 TECHNICAL WHITE PAPER

 if (pkt->flags & 0x100) { // Check if FIN flag in TCP pkt
 ...

 // Handle the FIN bit, depending on the current TCB state

 switch (tcb->state) {
 ...

 default:
 return -22;
 }

 }

Since the state of the socket is still not valid for a FIN to be received, this check fails and an error is

returned from itpcp_deliver back to iptcp_input. The state of the socket (tcb->state) is thus not changed

yet again, and remains LISTEN_STATE! As for iptcp_input, it now simply drops this packet due to the

error, but the socket itself still remains alive. Notably, the TCB_STATE_URG_RECEIVED is left set on the

socket, and the recv.urg_ptr retains the value sequence_a + 1.

Finally, at this point a valid (#3) SYN packet is sent to this socket on the 4-tuple, with an Initial Sequence

Number value sequence_b. Assume that sequence_b = sequence_a + 1000000. This is a fully valid SYN

packet, and it will be handled by the code as intended. A SYN/ACK will be sent back to the attacker, and

the attacker will respond with an ACK to finalize the handshake. Additionally, the attacker may include

up to 64k bytes of data with this ACK segment, which will be added to the TCP receive window of the

socket.

Only now will the state of the socket become ESTABLISHED_STATE, and a user waiting on an accept() call

will be handed the client socket. Then the user will likely call recv() on the socket. At this point, the

familiar code in iptcp_usr_get_from_recv_queue will be executed:

 ...

 if (tcb->flags & 0x80000))) { // TCB_STATE_URG_RECEIVED
 ...

 if (iptcp_at_mark(sock)) {
 ...

 } else if ((int32)(tcb->recv.urg_ptr - len +
 tcb->recv.seq_next - sock->ipcom.rcv_bytes) <= 0) {
 // Calculate the urgent data offset inside the window, in order to
 // copy data up to, but not including the urgent data

 len = tcb->recv.urg_ptr - 1 - tcb->recv.seq_next + sock->ipcom.rcv_bytes;
 }

The TCB_STATE_URG_RECEIVED is still set at this point, and the recv.urg_ptr retains its value too.

Therefore, the else-if condition is checked, and can now be substituted with its matching values:

(int32)(tcb->recv.urg_ptr - len + tcb->recv.seq_next - sock->ipcom.rcv_bytes) <= 0
⇔ (int32)(sequence_a + 1 - len - sequence_b) <= 0

URGENT/11 – ©2019 ARMIS, INC. – 28 TECHNICAL WHITE PAPER

⇔ (int32)(sequence_a + 1 - len - sequence_a + 1000000) <= 0
⇔ (int32)(-len - 999999) <= 0

Therefore the check is passed, and len will be set by the urgent data offset calculation as such:

 tcb->recv.urg_ptr - 1 - tcb->recv.seq_next + sock->ipcom.rcv_bytes
⇔ sequence_a + 1 - 1 - (sequence_a + 1000000)

⇔ -1000000

Therefore, len will now equal -1000000, and since len is an unsigned 32-bit integer, it will now equal a

very large number, voiding any user defined restrictions. Similar to the previous Urgent Pointer

vulnerability described above, this will result in trivial overflows in any code that performs recv() on this

TCP socket.

A 5-way-handshake

The following wireshark capture shows the TCP-AO state confusion attack described above. The target

device (192.168.108.10) has a server listening on TCP port 59747:

Wireshark capture of the attack packets

TCP options field of the first packet from the capture above

As you can see, the first 3 packets from the attacker to the target have the SYN flag set:

1) The first packet has a malformed TCP-AO option (shown in the second capture)

2) The second packet has Seq = 0 and the URG, FIN flags are set. The Urgent Pointer is also set to

10 (an arbitrary non-zero value)

3) The third packet has Seq = 1000000 and is otherwise valid

A non-vulnerable TCP stack should have returned an RST packet for each of the first 2 packets. However,

in the case of a vulnerable IPnet stack, these packets are handled in an incorrect fashion, resulting in a

state confusion issue. The end result is an open (connected) socket, which has tcb->recv.urg_ptr set to

10 and tcb->recv.seq_next set to 1000000. This will cause the urgent data offset calculation to underflow

during recv() calls, as explained in the sections above.

URGENT/11 – ©2019 ARMIS, INC. – 29 TECHNICAL WHITE PAPER

Following the first 3 packets, the target responds with a SYN/ACK, indicating the reception of the 3rd

SYN packet. The 5th packet is an ACK sent by the attacker to finish the handshake. This ACK packet has a

payload attached, with a length of 1024. At this point any subsequent recv() call on the socket will result

in 1024 bytes written into the user buffer, regardless of the len passed by the user.

If the TCP server on port 59747 performs a recv() of a shorter length, a memory corruption will occur.

Moreover, the attacker controls the overflow data, as it’s the data that was sent in the ACK packet.

Series of C-interp calls simulating a listening server on a VxWorks BSP VM

The screen capture above is from a VxWorks BSP VM running v6.9.3. Here, fd = 5 is the listening socket

of the server which was opened prior. After the attack is performed, the server accepts() the attacker

connection, resulting in an open client socket (fd = 6). Then a recv() of length 10 is performed. However,

1024 bytes are written (!) as indicated by the return value of recv which results (in this case) in a heap

overflow.

TCP Urgent Pointer state confusion during connect() to a remote host (CVE-2019-12261)

The previous code flows where achievable when a target device was acting as a TCP server, and an

attacker initiated a connection with that server. An additional Urgent Pointer vulnerability variant exists

when a VxWorks device running version 6.7 or above creates an outbound TCP connection. In this state,

an exploitable state confusion is possible during a connect() call on a TCP socket, after the target device

sends a SYN packet to a remote TCP port. If an attacker responds to this SYN with a specially crafted

SYN/ACK, a similar issue with urgent pointer handling arises as in the previous section of this document.

To exploit the issue, an attacker needs to be in either of the following positions:

1) Coerce the target device to create a TCP connection to a malicious host.

2) Be in a Man-in-the-middle (MiTM) position between the target device and a legitimate host that

it connects to, which can be easily achieved for an attacker on the LAN.

After a connect() call is made by the user application, a SYN packet is sent to the peer, and the socket

enters the SYN_SENT_STATE state. At this point, a SYN/ACK packet is expected to arrive to iptcp_deliver.
When a packet arrives in this state, the iptcp_deliver_state_syn_sent will be called:

if (p->seg.flags_n & 0x1000) { // TCP_ACK_FLAG
 ...

URGENT/11 – ©2019 ARMIS, INC. – 30 TECHNICAL WHITE PAPER

 *newState = ESTABLISHED_STATE;
}

...

if (p->seg.flags_n & 0x200) { // TCP_SYN_FLAG
 ...

 iptcp_process_syn(p);
 return 2;

}

If the received packet indeed had the SYN and ACK flags set, iptcp_process_syn is called, and

tcb->recv.seq_next is assigned the value p->seg.seq_start which is the Initial Sequence Number inside

the SYN/ACK packet. This value is attacker controlled, and shall be denoted as sequence_a. Note that

*new_state does not actually set the tcb state yet. This is supposed to happen later, inside iptcp_deliver.

Now, assume that the attacker has added the FIN and URG flags to the SYN/ACK packet, creating a

SYN/ACK/FIN/URG (#1) response instead of a regular SYN/ACK. The code flow shown above happens

exactly the same way as with a regular SYN/ACK. There are no checks against the existence of the FIN

and URG flags in iptcp_deliver_state_syn_sent (or before).

The rest of the flow inside iptcp_deliver will set the tcb->recv.urg_ptr (which is set to sequence_a + 1)
and then abort further processing due to the unexpected FIN. Therefore, the state of the tcb is again not

updated, and thus remains SYN_SENT_STATE.

An attacker can now send another SYN/ACK (#2) packet. This time it will be a valid SYN/ACK, but with an

Initial Sequence Number denoted as sequence_b. Additionally, the attacker may include up to 64k bytes

of data with this SYN/ACK segment, which will be added to the TCP receive window of the socket. Only

now the state of the socket will become ESTABLISHED_STATE, and the connect() call will return.

However, at this point, there is again a disparity between the value of tcb->recv.urg_ptr (derived from

sequence_a) and tcb->recv.seq_next (derived from sequence_b). To reiterate, this will cause any recv()

call on the socket to corrupt memory in an attacker controlled fashion, resulting in RCE.

TCP Urgent Pointer state confusion due to race condition (CVE-2019-12263)

The last Urgent Pointer vulnerability variant we discovered is a race condition affecting all VxWorks’

devices that use the IPnet stack (v6.5 and above) and can result in a state confusion of the urgent

pointer. Similar to the previous examples which demonstrated the result of this type of state confusion,

this race condition could result in a memory corruption of a user task buffer that can lead to remote

code execution triggerable on a target device acting either as a TCP server, or a TCP client.

The race condition results from the fact that various variables represent the state of the urgent pointer

as a whole but might be individually changed by the kernel task (tNet0) while a user task is accessing

them (in iptcp_usr_get_from_recv_queue). This may occur if the user task is running in a different

priority than the kernel task, or if SMP (Symmetric Multi-Processing) is in use in a multi-core

environment. There is no lock or mutex to prevent a race condition of this nature from occurring.

URGENT/11 – ©2019 ARMIS, INC. – 31 TECHNICAL WHITE PAPER

The various variables that together represent the state of the urgent pointer can be seen in this familiar

code in iptcp_usr_get_from_recv_queue:

 ...

 if (tcb->flags & 0x80000))) { // TCB_STATE_URG_RECEIVED
 ...

 if (iptcp_at_mark(sock)) {
 ...

 } else if ((int32)(tcb->recv.urg_ptr - len +
 tcb->recv.seq_next - sock->ipcom.rcv_bytes) <= 0) {
 // Calculate the urgent data offset inside the window, in order to
 // copy data up to, but not including the urgent data

 len = tcb->recv.urg_ptr - 1 - tcb->recv.seq_next - sock->ipcom.rcv_bytes;
 }

This code assumes that the TCB_STATE_URG_RECEIVED is set in conjunction to setting the

tcb->recv.urg_ptr variable. It also depends on tcb->recv.seq_next and sock->ipcom.rcv_bytes being set at

the same time, and that tcb->recv.urg_ptr is set in conjunction with these variables as well.

For example, if the len calculation inside is preempted between fetching the sock->ipcom.rcv_bytes

value and the tcb->recv.seq_next value, any new segment received in the meantime will increase the

difference between the two fetched values in this function arbitrarily. This will enable an attacker to

underflow len, causing the vulnerable condition described prior. Other examples of this race condition

that will result in this underflow are also possible.

Such a race condition is possible if the priority of the task that performs the recv() call is lower than the

IPnet task’s priority, so that it will be preempted immediately once a new packet is received from the

network. In any case, it is also possible on multi-core SMP systems regardless of priorities.

URGENT/11 – ©2019 ARMIS, INC. – 32 TECHNICAL WHITE PAPER

Heap overflow in DHCP Offer/ACK parsing in VxWorks’ DHCP client (ipdhcpc)

TL;DR

A heap overflow vulnerability exists in VxWorks’ DHCP client when parsing incoming DHCP Offer and

ACK packets. An attacker on the LAN can trigger this vulnerability by sending a specially crafted DHCP

Offer packet to a target device that has sent a DHCP Discover packet or by sending a DHCP ACK packet in

response to a target device that has sent a DHCP Request packet. This overflow contains attacker

controlled bytes, and can lead to remote code execution.

Background - DHCP options

The DHCP protocol allows automatic network configurations for all devices on a LAN. Prior to DHCP,

each machine had to be configured manually with an IP address, subnet mask and default gateway IP.

DHCP utilizes a central server which answers to “DHCP request” broadcasts with Offers that contain

network configurations.

Every device on the network that desires to be configured by the central DHCP server, runs a local DHCP

client daemon. This daemon sends a broadcast and waits for the configuration to arrive from a server.

This communication takes place over UDP ports 67 and 68. The structure of an Offer packet that arrives

as a response to a client is illustrated below:

Note the variable length options list at the end of the packet

URGENT/11 – ©2019 ARMIS, INC. – 33 TECHNICAL WHITE PAPER

An attacker on the LAN will also receive all DHCP discover broadcasts sent on the network, and will be

able to respond to them, as the protocol includes no authentication.

The VxWorks ipdhcpc DHCP client daemon has a heap overflow vulnerability since version 6.7 and above

in the parsing of those DHCP Offer packets. The vulnerability can be triggered by an attacker on the LAN

who responds with a specially crafted DHCP Offer packet to a target device that has sent a DHCP

Discover packet. The same also applies for the DHCP ACK packet, in response to a DHCP Request packet.

The vulnerability (CVE-2019-12257)

The DHCP Offer (and ACK) packet ends with a variable length options array. The ipdhcpc daemon

allocates space on the heap for the incoming options inside ipdhcpc_handle_malloc:

...

handle->info.options = ipcom_malloc(ipdhcpc.max_message_size - 264);

The buffer is thus allocated to the size ipdhcpc.max_message_size - 264. Later, when the daemon is

waiting to receive a response packet, a recvfrom() call is performed inside the main loop of

ipdhcpc_daemon:

ipdhcpc.in_pkt_len = ipcom_recvfrom(ipdhcpc.fd,
 ipdhcpc.in_pkt,
 ipdhcpc.max_message_size,
 ...);

A packet of at most ipdhcpc.max_message_size bytes is received here, and its received length is set in

ipdhcpc.in_pkt_len. The flow continues to parse the packet, arriving in ipdhcpc_reply_input, where the

length of the incoming options is calculated based on ipdhcpc.in_pkt_len:

 handle->priv->in_optlen = ipdhcpc.in_pkt_len - 240;

Later, the flow continues to ipdhcpc_offer_input (or ipdhcpc_ack_input), where the following memcpy()

will occur:

handle->info.optlen = handle->priv->in_optlen;
ipcom_memcpy(handle->info.options,
 &ipdhcpc.in_pkt->options[4],
 handle->info.optlen);

Note that the maximum value for ipdhcpc.in_pkt_len is ipdhcpc.max_message_size. Therefore the

maximum value for handle->priv->in_optlen can be ipdhcpc.max_message_size - 240, which is greater

URGENT/11 – ©2019 ARMIS, INC. – 34 TECHNICAL WHITE PAPER

than the space allocated for handle->info.options, chosen to be ipdhcpc.max_message_size - 264. This

results in a 24 byte heap overflow with attacker controlled data.

The structure of ipcom_malloc heap blocks consists of 16 bytes of metadata, and an 8 byte alignment

trailer. Therefore, 24 bytes are exactly enough to corrupt the metadata of the next block, making RCE

achievable.

Interestingly, a similar vulnerability in the parsing of DHCP options was found in the Windows 10 DHCP

client recently, known as CVE-2019-0547. A good writeup is available here.

URGENT/11 – ©2019 ARMIS, INC. – 35 TECHNICAL WHITE PAPER

https://sensepost.com/blog/2019/analysis-of-a-1day-cve-2019-0547-and-discovery-of-a-forgotten-condition-in-the-patch-cve-2019-0726-part-1-of-2/

Five Logical errors, DoS and Information Leak vulnerabilities

In addition to the six RCE vulnerabilities described in previous sections, we have also discovered five

additional vulnerabilities that result in either logical errors, denial of service, or information leaks.

These vulnerabilities where found in various subsystems of the TCP/IP stack - TCP, IGMP, DHCP, and

even in the very ancient Reverse ARP (RARP) protocol. The following sections will describe these

vulnerabilities.

TCP connection DoS via malformed TCP options (CVE-2019-12258)

This issue affects all VxWorks’ versions that use IPnet (version 6.5 and up). An attacker can send a

specially crafted TCP packet with the 4-tuple of an existing connection, but without knowing the

sequence numbers of that connection, which will cause the connection to drop. This ability can allow an

attacker a denial-of-service for any TCP connection to or from an affected VxWorks device.

The specially crafted TCP packet contains illegal IP options, causing the function iptcp_process_options

to fail:

int __fastcall iptcp_process_options(_DWORD *a1, tcp_hdr_t *tcp_hdr) {

 ...

 v10 = 0;
 while (v10 < tcp_options_length) {
 opt = &tcp_hdr->options[v10];
 ...

 switch (opt->type)
 {

 case 2: // TCP_MSS_OPTION_TYPE

 if (opt->length != 4)
 // If MSS option isn’t 4 bytes length - break the flow.

 return -22;

Simplified decompilation snippet from iptcp_process_options

The above function may fail and return a negative value error code in various code-flows. For example, if

a TCP packet with an TCP_MSS_OPTION_TYPE (2) option is received with an option length that is not 4

bytes the function will fail with -22.

This function is called by iptcp_input (described in depth in a previous section) and when it fails the TCP

connection on which it was received is dropped by iptcp_send_reset:

 v32 = iptcp_process_options(&v68, tcp_hdr);
 if (v32 < 0)
 {

URGENT/11 – ©2019 ARMIS, INC. – 36 TECHNICAL WHITE PAPER

 iptcp_send_reset(...);
 return 0;

 }

Inside iptcp_input

So, by sending a TCP packet with an invalid TCP options header, a remote attacker can cause the TCP

connection to disconnect, based solely on the 4-tuple of that connection.

Handling of unsolicited Reverse ARP replies (CVE-2019-12262)

One of the most bizarre vulnerabilities we found is a logical error vulnerability in the Reverse ARP (RARP)

protocol. An attacker on the local LAN can send unsolicited RARP reply packets to a target device (by its

MAC). These in turn will allow him to add IPv4 addresses to the interface that receives them on the

target device, which can lead to various denial-of-service attacks.

RARP is an old protocol (from 1984) that preceded DHCP for the purposes of automatic network address

configuration. Similarly to DHCP, a client broadcasts a request for an address to be assigned, and listens

for a response that contains its assigned address.

In reality, no modern network or device should support RARP since it’s incredibly obsolete and

practically unused. While the IPnet stack does support RARP, it doesn’t attempt to send a RARP request

by default. However, responses are still handled.

RARP reply packet that assigns the address 192.168.108.2

The RARP protocol normally begins with a device broadcasting a RARP request, and then waiting for the

response (similar to DHCP). However, in the IPnet code, the function ipnet_eth_rarp_input is called for

every ethernet packet that has the protocol id 0x8035 (The RARP protocol ID):

URGENT/11 – ©2019 ARMIS, INC. – 37 TECHNICAL WHITE PAPER

https://tools.ietf.org/html/rfc903

 ...
 if (*(_WORD *)rarp_pkt == 256
 && *(_WORD *)(rarp_pkt + 2) == 8
 && *(_BYTE *)(rarp_pkt + 4) == 6
 && *(_BYTE *)(rarp_pkt + 5) == 4
 && *(_WORD *)(rarp_pkt + 6) == 1024)
 {
 interface = ipnet_eth_is_valid_node_mac(interface, rarp_pkt + 8);
 if (interface)
 {
 // Validate the IP address isn’t class D or E
 if (!(*(_WORD *)(rarp_pkt + 24) & 0x80)
 || (*(_WORD *)(rarp_pkt + 24) & 0xC0) == 128
 || (interface = *(_WORD *)(rarp_pkt + 24) & 0xE0, interface == 192))
 {
 ret = ipnet_ip4_add_addr(interface);
...

Decompilation snippet from ipnet_eth_rarp_input

The validations done at the start of this function merely check the validity of the fields of the received

RARP packet. Later the provided IP address is simply added by ipnet_ip4_add_addr. Additionally, while

the address being added is checked to be a class other than D or E addresses, it is not verified that the

address is not the local subnet broadcast address, 127.0.0.1, or other highly invalid values. Lastly, There

is no limit on the amount of IP addresses that could be added.

This could be used as DoS, by configuring the target device with multiple IP addresses, so that each of

those conflicts with other devices on the network, or create invalid routing tables on target device that

will prevent it from creating any network traffic.

Logical flaw in IPv4 assignment by the ipdhcpc DHCP client (CVE-2019-12264)

Similar to the RARP vulnerability, an assignment of invalid IPv4 addresses can be achieved by abusing

VxWorks’ built-in DHCP client (ipdhcpc). In all VxWorks’ versions that support IPnet (v6.5 and up), the

DHCP client will accept any IPv4 address assigned to it by a DHCP server, even if this address is not a

valid unicast address (multicast, broadcast, or other illegal addresses).

The function ipdhcpc_ack_input will be called when DHCP ACK packets are received, and is responsible

for assigning the allocated IPv4 address to the interface. The code in ipdhcpc_ack_input will simply take

the IP address from the incoming DHCP ACK packet and passes it to the IP_SIOCAIFADDR ioctl function

that will set it on the interface.

The ability to assign a multicast address to a device, remotely, can lead to problematic scenarios, as will

be demonstrated in the following sections.

URGENT/11 – ©2019 ARMIS, INC. – 38 TECHNICAL WHITE PAPER

DoS via NULL dereference in IGMP parsing (CVE-2019-12259)

If an attacker is able to force the assignment of a multicast IP address on a target device via the issue

described in the previous section - a NULL dereference that leads to a crash of the network task (tNet0)
may be achieved through an IGMPv3 membership query packet sent to a target device. This vulnerability

affects all VxWorks’ versions that support IPnet (v6.5 and up).

When a multicast address is assigned to a target device via the DHCP client the multicast address object

in the network interface is not initialized properly. In this state, an attacker can send an IGMPv3

membership query packet to the target device that would lead to a NULL dereference in the function

ipnet_igmpv3_create_membership_report. In most applications, this would result in a crash of the

network task (tNet0) since the address 0 will not necessarily be mapped, and a page fault would occur.

To trigger this vulnerability an attacker will first force an assignment of a multicast address on a target

device via a specially crafted DHCP response packet. Then, he would send an IGMPv3 membership query

packet to the target device which will be processed by ipnet_igmp_input and an IGMP report will then

be scheduled to be sent via the function ipnet_igmp_report_specific_query. This function calls the

ipnet_igmp_report that will attempt to build an IPNET_MCAST_REPORT_SPECIFIC_QUERY report:

...
v11 = addr_entry->mcast.report_type;
...
if (v11 == 2) {
 v7.set = addr_entry->mcast.filter;
 v7.group_record->record_type = v7.set->user;
...

In this specific case, the variable v7.group_record->record_type will be set to

addr_entry->mcast.filter->user. However, in this specific flow, the filter pointer inside the mcast object

will remain set to 0 - so the final dereference (filter->user) will result in a NULL dereference. All other

cases of the switch case in the above function first validate that the specific set is not NULL before

dereferencing it.

When the address 0 is not mapped, this NULL dereference will cause a page fault which would lead to

the crash of the network stack (tNet0) and result in a DoS for all network related operations of the

device.

IGMP Information leak via IGMPv3 specific membership report (CVE-2019-12265)

A general observation we made led us to this vulnerability which can result in an information leak of the

packet heap via an IGMPv3 membership query report. The basis of this issue is the introduction of

scattered packets in the reassembly of fragmented IP packets. In VxWorks’ versions 6.9.3 and up, the

reassembly of IP fragments is carried out by linking the various fragments via the next_part pointer in

URGENT/11 – ©2019 ARMIS, INC. – 39 TECHNICAL WHITE PAPER

the Ipcom_pkt structure. This change can be viewed, for example, in the implementation of the

ipcom_pkt_get_length function:

int ipcom_pkt_get_length(pkt_object_t *pkt)
{
 if (pkt->next_part == 0)
 return pkt->end - pkt->start;
 return (pkt->end - pkt->start) + ipcom_pkt_get_length(pkt->next_part);
}

The function iterates over all fragments of the packet, and returns their summed length. It seems,

however, that not all parts of the IP stack have adjusted for this change, and some functions aren’t

aware that an IP packet might be scattered. For example, the utility function ipcom_pkt_get_data:

void* ipcom_pkt_get_data(pkt_object_t *pkt, int offset)

{

 return &pkt->data[pkt->start + offset];
}

The offset passed to this function might point beyond the first fragment of the IP packet, in one of the

additional fragments of the packet, chained to it via the next_part pointer. The returned pointer

(&pkt->data[pkt->start + offset]) might be outside the valid range of the first fragment (beyond the

pkt->end).

An example case of this vulnerability exists In the function ipnet_igmp_input:

 ...

 pkt_length = ipcom_pkt_get_length(pkt);
 igmp_hdr = ipcom_pkt_get_data(pkt, 0);
 ...

The pkt_length variable is set using the ipcom_pkt_get_length function, that will return the summed

length of all the packet’s fragments, but igmp_hdr will point to the first fragment of the packet. The

code in this function doesn’t validate that the entire igmp_hdr or the payload that follows it actually fit

in the first fragment.

Later in this function, a set will be built based on the received IPv4 addresses that will follow the IGMP

header:

 ...

 v14 = ntohs(igmp_hdr->data.igmp.number_of_sources)
 for (v15 = 0; v15 < v14; v15++)
 {

 v32 = ipcom_set_add(sources, &igmp_hdr->data.igmp.source_addr[v15 * 2]);
 ...

URGENT/11 – ©2019 ARMIS, INC. – 40 TECHNICAL WHITE PAPER

Snippet from ipnet_igmp_input

Since the igmp_hdr variable points to the first fragment of the packet, the IPv4 addresses that are being

added to the set might actually be coming from an out-of-bound read of that first fragment. The

function does validate that pkt_length contains the needed bytes to avoid parsing out-of-bounds bytes

from the incoming packet, but since pkt_length is calculated using the entire fragments, this validation is

not sufficient.

Continuing in the code-flow of this function we can see that the set containing IPv4 addresses that may

have been read out of bounds can be returned to the attacker via the

ipnet_igmpv3_create_membership_report function that will send an IGMP packet containing this

specific set.

A device will be affected by this information leak vulnerability if it has a multicast address assigned to its

network interface (any multicast address that is not the all multicast host address - 224.0.0.1). Using the

DHCP client vulnerability described above, an attacker can also force the assignment of a multicast

address on a targeted device remotely. However, since this flow will lack some initialization routines

that are normally used when a multicast address is assigned the NULL dereference will occur. If the

address 0 is a valid, mapped address in the target device, the NULL dereference will not crash the

network stack, and the information leak would then occur.

URGENT/11 – ©2019 ARMIS, INC. – 41 TECHNICAL WHITE PAPER

Mitigating the risks of URGENT/11 vulnerabilities

Mitigating the risks of the vulnerabilities described in this paper is not a trivial task. Unlike OSs that are

used by consumer devices such as PCs and mobile phones, the underlying operating system used by

most embedded devices is not regularly advertised. To mitigate the risk of these vulnerabilities, one

would first need to identify what devices run VxWorks?

In addition to the difficulty in identifying which devices run VxWorks, device manufacturers are also

faced with a challenge to provide firmware upgrades within a reasonable time. Many VxWorks devices,

such as medical and industrial devices, are required to go through extensive testing and certification

processes before firmware updates can be provided to end-users. Until such updates have been

provided, how can end-users protect themselves?

Luckily, there are some unique identifiers for the discovered vulnerabilities that can be used by Firewalls

and IDS solutions to detect and block any exploitation attempts of these vulnerabilities.

For example, four of the most critical vulnerabilities we have discovered (CVE-2019-1255,

CVE-2019-1260, CVE-2019-1261, CVE-2019-1263) use TCP’s Urgent Flag to abuse the Urgent Pointer

mechanism of TCP. This mechanism is so remote and unused, that creating rules to detect and block any

use of it can be a sufficient method to detect any attempts to attack a VxWorks device with these

vulnerabilities.

Firewall rules to drop any TCP packet that has the Urgent Flag turned on can completely eliminate the

risk of these 4 vulnerabilities, from attackers coming from the Internet. In addition, IDS solutions can be

used to detect attacks in internal networks by detecting any use of the Urgent Flag, such as the

detection done by following Snort rule:

alert tcp any any -> any any (flags: U+; msg: "OS-VXWORKS - Use of Urgent Flag might

indicate potential attempt to exploit an Urgent11 RCE vulnerability";

classtype:attempted-admin; reference:cve,2019-12255; reference:cve,2019-12260;

reference:cve,2019-12261; reference:cve,2019-12263; reference:url,armis.com/urgent11; rev:

1; sid:1000002)

Snort rule to detect any use of Urgent Pointer

The above rule can cause some false positives, in the rare case when a legitimate TCP connection uses

the Urgent Pointer (such as RLOGIN connections, or certain TELNET clients). An alternative approach can

be to limit the detection of the Urgent Pointer vulnerabilities resulting from various state-confusions.

These require the use of packets that contain both SYN, URG and FIN flags. This combination will never

occur in legitimate TCP traffic, and the following Snort rule can detect it:

URGENT/11 – ©2019 ARMIS, INC. – 42 TECHNICAL WHITE PAPER

https://slack-redir.net/link?url=http%3A%2F%2Farmis.com%2Furgent11%3B

alert tcp any any -> any any (flags: SUF+; msg: "OS-VXWORKS Illegal use of Urgent pointer -

Potential attempt to exploit an Urgent11 RCE vulnerability"; classtype:attempted-admin;

reference:cve,2019-12255; reference:cve,2019-12260; reference:cve,2019-12261;

reference:cve,2019-12263; reference:url,armis.com/urgent11; rev: 1; sid:1000001)

Snort rule to detect use of SYN|URG|FIN packets

To detect and block attempts to exploit the IP options vulnerability we’ve discovered (CVE-2019-12256)

one can search for any IP packet that contains the LSRR or SSRR options. These options should never be

used in modern networks, regardless of the potential RCE vulnerability they present to VxWorks devices.

Most firewalls will drop any IP packet that contain these packets for security reasons, and IDS solutions

can detect any use of them using the following Snort rules:

alert ip any any -> any any (ipopts: lsrr; msg: "OS-VXWORKS Use of LSRR option, potential

attempt to exploit an Urgent11 RCE vulnerability"; reference:cve,2019-12256;

classtype:attempted-admin; reference:url,armis.com/urgent11; rev: 1; sid:1000003)

alert ip any any -> any any (ipopts: ssrr; msg: "OS-VXWORKS Use of SSRR option, potential

attempt to exploit an Urgent11 RCE vulnerability"; reference:cve,2019-12256;

classtype:attempted-admin; reference:url,armis.com/urgent11; rev: 1; sid:1000004)

Snort rules to detect any use of LSRR or SSRR options

URGENT/11 – ©2019 ARMIS, INC. – 43 TECHNICAL WHITE PAPER

https://slack-redir.net/link?url=http%3A%2F%2Farmis.com%2Furgent11%3B
https://slack-redir.net/link?url=http%3A%2F%2Farmis.com%2Furgent11%3B
https://slack-redir.net/link?url=http%3A%2F%2Farmis.com%2Furgent11%3B

Conclusion

This research demonstrates some unique vulnerabilities which combine a frightening set of traits:

Remotely executable vulnerabilities that don’t require any user interaction, affecting a widely used

operating system that drives mission critical devices. In addition, these vulnerabilities allow for some

very unique attack scenarios. The IP option vulnerability (CVE-2019-12256) can be used in a broadcast

packet and hit any vulnerable device in the local LAN at once. An attacker can use this vulnerability
without even being required to take any reconnaissance steps to find vulnerable devices within a

network. And the TCP Urgent vulnerabilities (CVE-2019-12255, CVE-2019-1260, CVE-2019-1261,

CVE-2019-1263) can even be leveraged by an attacker when the target device is located behind a NAT

and Firewall solutions - which usually provide impregnable security for the devices behind it.

Although VxWorks includes some optional mitigations that could make some of the URGENT/11

vulnerabilities harder to exploit, we have not found these mitigations used by device manufacturers.

In the devices we've examined (and exploited), almost no mitigations were used: no ASLR, no stack

canaries and no DEP. Unfortunately, the lack of mitigations makes URGENT/11 vulnerabilities

relatively easy to exploit.

The frightening set of traits and attack scenarios these vulnerabilities enable emphasize that RTOSs

should receive much more attention and scrutiny by researchers. The challenge of researching

closed-source RTOSs should not deter researchers from digging in and continue to uncover

vulnerabilities that in some cases can affect critical systems for more than a decade.

URGENT/11 – ©2019 ARMIS, INC. – 44 TECHNICAL WHITE PAPER

20190729.1

