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Introduction 

Armis researchers discovered 11 zero day vulnerabilities in VxWorks, the most popular real-time 

operating system (RTOS), used by over 2 billion devices including mission-critical devices, such as 

industrial, medical and enterprise devices. Dubbed ‘URGENT/11’, the vulnerabilities reside in IPnet, 

VxWorks’ TCP/IP stack, impacting versions for the last 13 years, and are a rare example of vulnerabilities 

found to affect the operating system. In its 32-year history, only 13 CVEs have been listed by MITRE as 

affecting VxWorks, none of which affected the core networking stack as severely as URGENT/11 does.  

Vulnerabilities in widely used implementations of TCP/IP stacks have become extremely rare in recent 

years, especially those that can enable remote code execution on target devices. This type of 

vulnerabilities represent the holy grail for attackers, since they do not depend on the specific application 

built on top of the vulnerable stack and only require the attacker to have network access to the target 

device, which makes them remotely exploitable by nature. When such vulnerabilities are found in TCP 

implementations, they can even be used to bypass Firewall and NAT solutions as they hide within 

innocent-looking TCP traffic. 

The 11 vulnerabilities found are comprised of 6 critical vulnerabilities, that can lead to remote code 

execution: 

1. Stack overflow in the parsing of IPv4 packets IP options (CVE-2019-12256) 

2. TCP Urgent Pointer = 0 leads to integer underflow (CVE-2019-12255) 

3. TCP Urgent Pointer state confusion caused by malformed TCP AO option (CVE-2019-12260)  

4. TCP Urgent Pointer state confusion during connect to a remote host (CVE-2019-12261) 

5. TCP Urgent Pointer state confusion due to race condition (CVE-2019-12263) 

6. Heap overflow in DHCP Offer/ACK parsing in ipdhcpc (CVE-2019-12257) 

And 5 vulnerabilities that can lead to denial-of-service, logical errors or information leaks: 

1. TCP connection DoS via malformed TCP options (CVE-2019-12258) 

2. Handling of unsolicited Reverse ARP replies (Logical Flaw) (CVE-2019-12262) 

3. Logical flaw in IPv4 assignment by the ipdhcpc DHCP client (CVE-2019-12264) 

4. DoS via NULL dereference in IGMP parsing (CVE-2019-12259) 

5. IGMP Information leak via IGMPv3 specific membership report (CVE-2019-12265) 

This document will detail the various esoteric and somewhat forgotten mechanisms of TCP/IP that have 

been found to contain vulnerabilities in VxWorks’ network stack implementation, as well as the 

vulnerabilities themselves. The whitepaper will also demonstrate the severe consequences these 

vulnerabilities have, affecting an extremely wide range of devices. 

For more information on URGENT/11 please visit https://armis.com/urgent11 
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Who we are 

Armis Labs is Armis’ research team, focused on mixing and splitting the atoms that comprise the IoT 

devices that surround us - be it a smart personal assistant, a benign looking printer, a SCADA controller 

or a life-supporting device such as a hospital bedside patient monitor. 

Our previous research includes: 

● BlueBorne - An attack vector targeting devices via RCE vulnerabilities in Bluetooth stacks used by 

over 5.3 Billion devices. This research was comprised of 3 technical whitepapers: 

○ BlueBorne - The dangers of Bluetooth implementations: Unveiling zero day 

vulnerabilities and security flaws in modern Bluetooth stacks 

○ BlueBorne on Android - Exploiting an RCE Over the Air 

○ Exploiting BlueBorne in Linux-Based IoT deices 

● BLEEDINGBIT - Two chip-level vulnerabilities in Texas Instruments BLE chips, embedded in 

Enterprise-grade Access Points. The technical whitepaper for this research can be found here: 

○ BLEEDINGBIT - The hidden attack surface within BLE chips 

Why research RTOS network stacks? 

In terms of raw numbers, the amount of embedded Microcontrollers and CPUs that run an RTOS is far 

greater, as far as we can tell, than CPUs or devices running fully-fledged OSs. 

In today's world, those embedded products and components are becoming increasingly more connected 

to LANs and even directly to the Internet. Moreover, critical devices that comprise our infrastructure, 

are likely to have at least some components that use an RTOS. Therefore the impact of serious 

vulnerabilities in popular RTOSs is great and not well understood to date. 

On top of all that, the codebases of those RTOSs are usually closed sourced, and in most cases, receive 

little security research into them. 

Executive summary 

URGENT/11 is a set of 11 vulnerabilities found to affect IPnet, VxWorks’ TCP/IP stack. Six of the 

vulnerabilities are classified as critical and enable Remote Code Execution (RCE). The remaining 

vulnerabilities are classified as denial of service, information leaks or logical flaws. As each vulnerability 

affects a different part of the network stack, it impacts a different set of VxWorks versions. As a group, 

URGENT/11 affect VxWorks’ versions 6.5 and above with at least one RCE vulnerability affecting each 

version. The wide range of affected versions spanning over the last 13 years is a rare occurrence in the 

cyber arena and is the result of VxWorks’ relative obscurity in the research community. This timespan 

might be even longer, as according to Wind River, three of the vulnerabilities have already existed in 

IPnet when it was acquired from Interpeak in 2006. 
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URGENT/11 enables three attack scenarios, depending on the location of the device on the network and 

the attacker’s position.  

The first attack scenario affects any impacted VxWorks device stationed at the perimeter of the network 

and is directly exposed to the Internet such as firewalls, modems, routers. An attacker can directly 

attack such devices from the Internet, compromise them and subsequently compromise the networks 

they guard. 

The second attack scenario affects any impacted VxWorks device stationed behind the perimeter, inside 

an internal network, that connects outbound to the internet through Firewall or NAT solutions. 

URGENT/11  can allow an attacker to take over such devices, by intercepting TCP connections they 

create to the Internet, and manipulating certain field of the TCP header in packets that are sent back 

through Firewall or NAT solutions. This is due to the vulnerabilities’ uniquely low level position inside the 

parsing and handling of the TCP header. 

In the last scenario, an attacker already positioned within the network as a result of a prior attack can 

send a specially crafted broadcast IP packet that will hit all vulnerable VxWorks devices within the local 

LAN at once. This is due to a very unique vulnerability found in the parsing and handling the IP header, 

that is triggered even in broadcast. This vulnerability is also an RCE vulnerability that can lead to remote 

take over. 
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Preparing the groundwork 

Past research 

Implementation vulnerabilities in various layers of the TCP/IP stack were relatively common in the past. 

Unsurprisingly, 1990’s software and operating systems had various DoS and RCE bugs in their network 

stacks. At the time, Internet connected PCs were only beginning to become popular, so even trivial bugs 

(by today's standards) were to be expected. However, over the years, network stacks came under 

justified scrutiny, and today such vulnerabilities are an extreme rarity.  

In this research we’ve looked into a more modern and up-to-date implementation of the TCP/IP stack. 

Interestingly enough, the bugs we found in our modern RTOS suffered from the same pitfalls as their 

ancient counterparts.  

For example, the WinNuke bug that became known in 1997, and was subsequently widely exploited, 

was a remote DoS bug in Windows 95 and NT. The bug could be triggered simply by sending a single TCP 

out-of-band segment (with the URG flag set) to a windows machine, resulting in a BSOD. 

 

Actual reproduction of the WinNuke bug on Windows 95 running inside VirtualBox. The crash is in the 

MSTCP VxD driver, which implements the TCP protocol. 
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This is remarkably similar to CVE-2019-12255 (“TCP Urgent Pointer = 0 leads to integer underflow”) 

which is presented in this paper. In our case, however, the bug is classified as an RCE (memory 

corruption). 

An additional example of ancient TCP/IP implementation bugs was the Ping Of Death, a DoS attack that 

affected many different operating systems back in the day - including Windows, Linux, Mac and Unix. 

This simple attack was generated by sending an ICMP Echo request (ping) with a payload of 64KB of data 

(the maximum possible payload in an IP fragmented packet). Back in 1997, this was all it took to 

remotely crash a wide array of operating systems.  

Surprisingly, modern examples of remotely triggerable TCP/IP bugs can still be found in the most widely 

used OSs, albeit being an extremely rare occurrence. For instance, CVE-2019-0547 is an RCE in the 

Windows 10 DHCP client. This bug can be triggered by malformed DHCP options, much like 

CVE-2019-12257 (“Heap overflow in DHCP Offer/ACK parsing inside ipdhcpc”) that is presented in this 

document. 

Another example is Apple’s heap overflow bug from 2018 affecting all Apple devices and OSs, namely 

CVE-2018-4407 [1][2][3]. This one is a bug in the construction of an ICMP error packet that is sent in 

response to a malformed IPv4 packet with specially crafted IP options. This too is remarkably similar to 

our CVE-2019-12256 (“Stack overflow in the parsing of IPv4 packets IP options”), which in our case is an 

RCE. 

Recent research into the TCP/IP implementation of AWS FreeRTOS (an RTOS by Amazon for IoT devices) 

has also led to the discovery of many RCE bugs (CVE-2018-16522 through CVE-2018-16528). 

Researching VxWorks 

VxWorks is not an open source product. Wind River, the company that originally authored VxWorks, is 

still updating it and selling it today. When their customer buys a license to embed the VxWorks RTOS 

into their product, what they generally receive is the Wind River Workbench IDE. This IDE comes with 

the VxWorks source code, and a wide variety of hardware support packages (BSPs). 

In the past, it was possible to obtain a working BSP image for VMWare directly from their website, as is 

described in this post. Today, it’s still possible to obtain a similar evaluation product after contacting 

their sales team, however this approach is likely not useful for security researchers. 

While legally obtaining the source code for research purposes is difficult, binary analysis is effective in 

the case of VxWorks research. There is a multitude of real world products that run up to date versions of 

VxWorks available for purchase, and their firmwares are usually freely available for download online. 

Due to the nature of how the Wind River Workbench IDE produces binaries, these firmwares are 

commonly shipped with ELF files containing full debug symbols, making them easy to decompile with 

modern tools, arriving at high quality results. 
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Some of the aforementioned products also come equipped with internal UART and JTAG interfaces, 

making debugging easy for a determined researcher. These qualities result in a setup that is as useful for 

research purposes as the BSP image mentioned above. In case the researcher has access to any version 

of the IPnet source code (from version 6.5 and above), the firmware analysis can be complemented to a 

degree where the resulting material is of source code quality for any desired VxWorks version. 

Identifying the weak points in TCP/IP implementations 

TCP/IP vulnerabilities from the past, across many different OSs and software implementations, have 

common weak points. Certain areas in the specifications have an inordinate amount of implementation 

bugs. In some cases, the same exact bugs appear across completely independent implementations. 

When approaching the task of discovering security issues in the VxWorks TCP/IP stack, we took the 

following map of weak points as a guide. Most of the bugs we’ve found were rather non-trivial, unlike 

their counterparts from the 90’s. However, all of them were somewhat related to the following parts of 

TCP/IP: 

● Parsing and handling of IPv4 options 

○ Structure of these options can become quite complex. 

○ Many IP options are considered highly esoteric, and are rarely used in practice, but are 

still be parsed by the various stacks. 

● Parsing and handling of TCP options 

○ Similarly to the IP options, some TCP options no longer make sense on the modern 

Internet, but most are still implemented in various TCP stacks. 

○ For instance, the MD5 Signature Option and its rather modern successor TCP 

Authentication Option (TCP-AO) have pretty much no place in a world where TLS is king. 

Consequently, they are almost never used (or tested). 

● ICMP error packets 

○ Various error conditions in the handling of IPv4 packets, as well as the higher level TCP, 

UDP and ICMP protocols, may result in the sending of ICMP error packets. 

○ The structure of these error packets is non-trivial, as they sometimes contain a copy 

(sometimes modified) of the original bad packets. Additionally, certain IP options affect 

their handling as well. 

● TCP Urgent / out-of-band data 

○ Per the RFC, TCP supports sending and receiving out-of-band data, using the URG flag 

and the Urgent Pointer field that exists in every TCP segment. 

○ However, its exact behaviour is very poorly defined, and consequently extremely badly 

implemented (more on this later). 

● IP datagram fragmentation 

○ IPv4 (and v6) support fragmentation of datagrams at the IP layer. A 64kb packet can be 

fragmented according to the underlying MTU. 

○ In practice, this feature is rarely used, thus the combination of fragmented IP packets, 

with various protocols on top of IP can introduce interesting edge cases. 
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Six critical RCE vulnerabilities discovered 

As mentioned above, six of the discovered vulnerabilities are of critical severity, since they are memory 

corruptions that can lead to remote code execution. The six vulnerabilities were found in three separate 

subsystems of VxWorks’ TCP/IP stack (IPnet): 

1. One RCE vulnerability in the IP layer (CVE-2019-12256) 

2. Four RCE vulnerabilities in the TCP layer (CVE-2019-12255, CVE-2019-12260, CVE-2019-12261 & 

CVE-2019-12263) 

3. One RCE vulnerability in the IPnet’s built-in DHCP client, ipdhcpc (CVE-2019-12257) 

The following sections will provide some background on the mechanisms in which these vulnerabilities 

were found, and detail the vulnerabilities themselves. 

Stack overflow in the parsing of IPv4 packets’ IP options 

TL;DR 

When sending a malformed IP packet containing multiple Source Record Route (SRR) options to a 

vulnerable VxWorks device, an ICMP error response packet is generated in response. The SRR options 

are copied into the IP options of the response packet without proper length validations, which result in 

an attacker controlled stack overflow.  

Background - ICMP error packets, IP options and Loose Source Routing 

ICMP error packets 

ICMP error packets are sent as a response to an error condition that arises during the handling of an IP 

packet. They are usually addressed to the source IP address of the packet. While most ICMP errors 

indicate network problems, like routing loops or an inability to route to the destination IP, some arise 

due to problems within the incoming (bad) packets themselves. For example, the Parameter Problem 

error is sent in response to an IP packet with malformed IP options. 

Many of these error packets will also contain a copy of the incoming bad packet, that triggered the 

problem. This copy will contain the original IP header, the TCP or UDP header, and some additional bytes 

from the payload of the packet. 
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Structure of an ICMP error packet 

Some implementations fail to reconstruct these headers into the ICMP error packet correctly, due to 

certain edge cases that can arise when handling malformed data.  

An example of such an issue is Apple’s XNU kernel heap overflow bug from 2018 (CVE-2018-4407). An 

integer underflow bug existed in the function icmp_error (bsd/netinet/ip_icmp.c:313). The bug could be 

triggered if the length of the bad packet’s IP header + TCP header is more than 84 bytes. Recall that both 

the IP and TCP headers have an options field, thus both can be up to 60 bytes long each. 

A TCP packet with a valid 40 bytes long TCP options field, and an invalid 40 bytes long IP options field will 

cause an ICMP error to be sent, and trigger the integer underflow. This, in turn, will cause a wildcopy 

heap overflow. An analysis of this vulnerability is available from the author. 

The use of various IP options in conjunction with an ICMP error packet that is sent in response to a 

malformed packet can result in certain edge cases that may lead to bugs. But what is the actual 

functionality of the IP options themselves? 

IP options, and Loose Source Routing 

Each IPv4 packet has a non-mandatory options field that can be up to 40 bytes long. Each separate 

option appears as a TLV field (type, length, value), and all of them together must fit within the 40 bytes. 

An ICMP Parameter Problem packet will be sent if an error is encountered during the parsing of these 

options. 

Some of the more widely known options are: 

1) Time Stamp: Requests each router that forwards the packet to append its current timestamp 

into the timestamp option field. The size of the entire option is set by the sender. 

2) Record Route: Requests each router to append its IP into the option, effectively recording the 

route a packet has taken. 

3) Loose Source Route (LSRR): Instructs the routers to route the packet via a given list of IPs, and 

record the route taken into the option. A longer route may be taken as long as the packet is still 

routed through every IP in the list. 

4) Strict Source Route (SSRR): Same as above, but the exact given route must be taken. 

5) Traceroute: Requests each router to send an ICMP Traceroute packet to the source IP. 
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6) Router Alert: Alerts the routers that the packet may require more extensive processing by the 

routers on the way to the destination. 

The infamous LSRR and SSRR options described above are known to introduce security concerns to any 

router that supports them, since they enable attackers to abuse the default routing path of a packet and 

force a malicious route on packets containing them. Due to this concern, they are blocked by almost all 

routers by default. However, in most TCP/IP implementations, these rather complex options are still 

parsed before they are blocked, presenting an additional attack surface nonetheless. 

Every LSRR\SSRR option has the following structure: 

 

The code, length and pointer fields are 1-byte wide. The IP addresses are 4 bytes each 

The option contains a list of IP addresses through which the packet should be routed (either strictly or 

loosely). The Pointer is an offset within the option to the next IP address that the packet should be 

routed through, and it is incremented by each router through which the packet traverses. 

According to RFC1122, once the packet has reached its destination, the IP list in the option needs to be 

recorded and passed up to the transport layer or to ICMP message processing. This recorded route will 

be reversed and used to form a return source route for reply datagrams, or for ICMP error messages 

sent back to the sender.  

This logic can be carried with the following copying logic: 

● All the IP addresses up to, but not including, the address prior to where Pointer points to are 

copied in reverse order. 

● The source IP of the packet is added to the end of the list instead of the not-included address. 

The logic of both a router that supports source routing options, and of a host that supports receiving 

packets that contain them is complex. The Parsing process of such options is thus also subject to 

potential bugs. 
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An example LSRR option from Wireshark: 

 

Wireshark capture of an IP packet with an LSRR option 

The support for a device to act as a host of source routing, as described in RFC1122, is almost never 

implemented in practice. However, in VxWorks  this support exists for some reason, introducing the 

attack surface for the following vulnerability. 

The vulnerability (CVE-2019-12256) 

In VxWorks’ IPnet stack the IPv4 protocol is implemented in the module ipnet2/src/ipnet_ip4.c. The 

function ipnet_ip4_input is the entry point for incoming IPv4 packets. This function first performs basic 

validation of the header, and then calls ipnet_dst_cache_get. This performs a lookup for a handler 

callback, according to the source and destination IP addresses of the packet. For instance, if the 

destination address matches the local address, the ipnet_ip4_local_rx handler will be called. Otherwise 

the packet may be forwarded (routed), or perhaps a Destination Unreachable condition may be 

triggered. 

Certain error conditions, such as Destination Unreachable will trigger an ICMP error packet to be sent by 

calling ipnet_icmp4_send. This function will also be called when an error occurs due to malformed IP 

options, and an ICMP Parameter Problem packet will be sent. This can occur through multiple stages in 

which the IP options are being parsed: in ipnet_ip4_multiple_srr_opt_check, which validates that only 

one instance of either LSRR or SSRR options exists in the option field, or in any of the various option 

parsing functions - ipnet_ip4_opt_*_rx. Inside ipnet_icmp4_send, an error packet is constructed, and 

certain options fields from the incoming (malformed) packet are copied. This is done by the 

ipnet_icmp4_copyopts function. The above flows are illustrated below: 
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IPv4 packet handling flow chart, with calls to the ICMP error sending function 

As shown above, while parsing incoming IPv4 packets, various code flows can lead to ICMP messages 

being sent in response to erroneous (malformed) packets. The ipnet_icmp4_send function will be used 

to send the response ICMP packets, and it will attempt to copy certain IP options from the incoming 

packet onto the outgoing packet with the function ipnet_icmp4_copyopts. In at least two code flows, the 

outgoing ICMP packet will be sent before the incoming packet is fully parsed, and the incoming IP 

options are fully validated to be legal, or even despite them failing validation already. This design flaw 

can lead to a stack overflow in the context of this ipnet_icmp4_send. 

This vulnerability exists since VxWorks version 6.9.3.  

Two distinct flows can lead to this vulnerability: 

1. A packet that is sent to the target’s MAC address, but with a destination IP address that is not a 

unicast address of the target, and is unreachable for it, which would result in a call to 

ipnet_ip4_dst_unreachable. 
2. A normal unicast packet that is directed to the target with both its MAC and IP addresses. This 

will occur in the ipnet_ip4_multiple_srr_opt_check function. 

The first flow happens in ipnet_ip4_input, when the destination IP of the incoming packet is unreachable 

according to ipnet_dst_cache_new’s return value, which indicates how the packet should be routed: 
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    return_code = ipnet_dst_cache_new(&v37, ipnet_ip4_dst_cache_rx_ctor, &v45); 
    if ( return_code < 0 ) 
    { 

      return_code = -1 * return_code; 
      // If dst is unreachable (EHOSTUNREACH, ENETUNREACH or EACCES) 
      if ( return_code == 51 || return_code == 65 || return_code == 13 ) 
      { 

        ipnet_ip4_dst_unreachable(packet, return_code); 

Decompiled snippet from ipnet_ip4_input 

The function ipnet_ip4_dst_unreachable will then call ipnet_icmp4_send and attach the original packet 

to the icmp_param struct. In ipnet_icmp4_send, the IP options from the failing (incoming) packet will be 

referenced by a structure that will be passed to ipnet_icmp4_copyopts: 
 

struct Ipnet_copyopts_param 
{ 
  void *options_ptr; 
  int total_opt_size; 
  int which_opts_to_copy; 
}; 
 
int ipnet_icmp4_send(Ipnet_icmp_param *icmp_param, Ip_bool is_igmp) 
{ 
  Ipnet_icmp_param *icmp_param; 
  Ipcom_pkt *failing_pkt; 
  struct Ipnet_copyopts_param options_to_copy; 
  struct Ipnet_ip4_sock_opts opts; 
  ... 
  options_to_copy.options_ptr = NULL; 
  options_to_copy.total_opt_size = 0; 
  // By default, copy SSRR and LSRR options. 
  options_to_copy.which_opts_to_copy = 0x208;  
  ... 
  if ( !is_igmp ) 
  { 
    if ( icmp_param->type == IPNET_ICMP4_TYPE_DST_UNREACHABLE || 
         icmp_param->type == IPNET_ICMP4_TYPE_PARAMPROB || 
         ... ) { 
 
      failing_pkt = icmp_param->recv_pkt; 
      ... 
      ip_hdr = failing_pkt->data[icmp_param->recv_pkt->ipstart]; 
      ... 
      options_to_copy.total_opt_size = 4 * (*ip_hdr & 0xF) - 20; 
      if ( options_to_copy.total_opt_size ) 
        options_to_copy.options_ptr = ip_hdr + 20; 
      ... 
    } 
  } 
  ... 
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  ipnet_icmp4_copyopts(icmp_param, &options_to_copy, &opts, &ip4_info); 
  ... 
} 

Decompiled snippet from ipnet_icmp4_send  

By default, the options_to_copy structure will instruct ipnet_icmp4_copyopts to copy the SSRR and LSRR 

options from the failing packet to the output packet. When the failing packet hasn’t been validated to 

contain valid IP options (as with the above flow), the ipnet_icmp4_copyopts function may be coerced 

into copying multiple SSRR or LSRR options from the failing packet onto the opts structure that is 

allocated on the stack of ipnet_icmp4_send. Additionally, these copied options might contain illegal 

structures that should otherwise have not been allowed. For example, when sending an IP packet that 

contains the following bytes in the IP options field, a stack overflow will occur: 

 

Type (LSRR) Length LSRR-Pointer Type (LSRR) Length LSRR-Pointer 

\x83 \x03 \x27 \x83 \x03 \x27 

In this example, two LSRR option are contained in the IP options field. These LSRR options don’t contain 

any routing entries (each option length is only 3 bytes) and the SRR-Pointer field points past the end of 

the option. As described previously, a host that receives an SRR option needs to take all the recorded 

routing entries, reverse their order, and use it to create a new SRR option that will be added to any 

returned packet. This functionality can be viewed in ipnet_icmp4_copyopts: 
 

int ipnet_icmp4_copyopts(Ipnet_icmp_param *icmp_param, 

                         struct Ipnet_copyopts_param *copyopts_param, 

                         struct Ipnet_ip4_sock_opts *opts, void *ip4_info) 

{ 

  ...  
  while ( 1 ) { 
    current_opt = ipnet_ip4_get_ip_opt_next(current_opt, 
                                            copyopts_param->options_ptr, 
                                            copyopts_param->total_opt_size); 
    if ( !current_opt ) 
      break; 
    opt_type = *current_opt; 
    if ( copyopts_param->which_opts_to_copy & (1 << (opt_type & 31)) ) 
    { 

      ... 
      if ( opt_type == 0x83 || opt_type == 0x89 ) { 
        // IP_IPOPT_LSRR or IP_IPOPT_SSRR 

        srr_ptr_offset = 39; 
        srr_opt = (srr_opt_t *)&opts->opts[opts->len]; 
        // Limits max ptr offset to 39, 
        // (but doesn't validate this offset is within the current option) 
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        if ( (int)current_opt[2] <= 39 ) 
           srr_ptr_offset = current_opt[2]; 
        offset_to_current_route_entry = srr_ptr_offset - 5; 
        ... 

        srr_opt->type = opt_type; 
        current_route_entry = &current_opt[offset_to_current_route_entry]; 
        srr_opt->length = 3; 
        srr_opt->route_ptr = 4; 
        while ( offset_to_current_route_entry > 0 ) { 
          memcpy((char *)srr_opt + srr_opt->length, current_route_entry, 4); 
          current_route_entry -= 4; 
          offset_to_current_route_entry -= 4; 
          srr_opt->length += 4; 
        } 

        memcpy((char *)srr_opt + srr_opt->length, &icmp_param->to, 4); 
        srr_opt->length += 4; 
        total_opts_len = opts->len + srr_opt->length; 
      } 

    } 

  } 

  ... 

} 

Decompilation output from a binary image, inside ipnet_icmp4_copyopts 

The code in ipnet_icmp4_copyopts will use these SRR-Pointer fields as the offset to the final route entry 

in an SRR option, and copy all the routing entries up to it to the outgoing packet options opts, which is 

allocated on the stack of ipnet_icmp4_send. Each LSRR option in the input buffer is 3 bytes long, but it 

would generate a copied-out option of 43 bytes (3 bytes header, 36 bytes of routing entries, 4 bytes of a 

new routing entry for the current route). Since there is no validation (in this context) that the failing 

packet doesn’t contain more than one SSRR\LSRR option, sending multiple options of this type will result 

in the overflow of opts which is a 40 bytes array allocated on stack. 

As noted above, this vulnerability can also be triggered by another flow, when a packet containing the 

above options is sent directly to the target device, without resulting in a destination unreachable 

condition. This is due to the fact that when the option parsing process fails in various ipnet_opt_*_rx 

functions, or in the ipnet_ip4_multiple_srr_opt_check function, an ICMP error message is sent in 

response (via ipnet_ip4_opt_icmp_param_prob). When this occurs, the remaining options that weren’t 

parsed by these validation functions can still contain illegal values, such as the multiple SRR options 

presented above, which would lead to the mentioned stack overflow. Since the overflow will contain 

attacker-controlled data from the input packet, this vulnerability can lead to remote code execution in 

both flows. 

Luckily, because the vulnerability depends on sending packets with invalid IP options, it can not be 

exploited over the Internet. The first router that encounters the packet will drop it. Therefore, the 

vulnerability is only exploitable by an attacker on the LAN.  
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Since this vulnerability is in the parsing of the IP header itself, it can also be triggered by sending a 

specially crafted IP packet with the invalid IP options in a broadcast packet. This can allow an attacker to 

target multiple vulnerable devices simultaneously. 

TCP Urgent Pointer RCE vulnerabilities 

TL;DR 

TCP has an esoteric mechanism to transfer out-of-bounds data named Urgent Data. By exploiting this 

mechanism, an attacker can underflow the length variable passed to recv() system calls, which will result 

in attacker-controlled overflow of the buffer passed to recv(). This can lead to overflow of a buffer 

allocated either in stack, heap, or global data section, which can lead to remote code execution. 

Background - crash course in TCP 

To understand the discovered vulnerabilities in IPnet’s implementation of TCP, a quick crash course in 

TCP is required. TCP is a transport layer protocol that allows the transfer of an ordered stream of bytes 

over the unreliable IP layer.  Explaining how the TCP protocol works, even at a cursory level, is well 

beyond the scope of this document. However, some particulars must be explained to understand the 

vulnerabilities described below. 

Each packet sent over the IP layer as part of a TCP session is called a segment. Below is an illustration for 

the structure of a segment: 

Each TCP segment is considered part of a particular TCP session according to its 4-tuple of 

source/destination IP and source/destination Port. 

Each segment has a Sequence Number field, that allows the receiving endpoint to determine where the 

included data is supposed to appear in the stream. 
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● The first packet of a TCP connection that was received by the endpoint contains the Initial 

Sequence Number (ISN). This segment must have the SYN flag set. 

● Subtracting the ISN from all other Sequence numbers received by that endpoint as part of the 

session provides the offset of the included data within the stream 

The TCP/IP stack of each endpoint holds a buffer called the TCP Window, that contains all data that was 

received as part of the session, but not yet handled by the user of the socket. Data is pulled out of the 

TCP window buffer when the user calls the recv() system call on the socket. Data is inserted whenever a 

new (non-duplicate) TCP segment arrives. 

The next in-order Sequence Number is kept for the window, and data can only be recv()’d by the user if 

it’s located before that offset in the stream. Therefore, the user will only ever read in-order data. 

 

In-order data Hole Out-of-order data 

 ^ next in-order sequence number 

A new segment that arrives may complement previous out-of-order data in the window, and thus make 

some (or all) of this data in-order. Therefore, the next in-order Sequence Number will then be adjusted 

to reflect this, and the user may now recv() the data. 

TCP Urgent data explained 

A lesser-known feature of TCP enables sending and receiving Urgent or Out of Band data over an existing 

TCP connection. This feature was designed to solve problems that arise during situations similar to the 

following use case: 

1) A client sends instructions to a server over a TCP connection asynchronously. That is, without 

waiting for one to be finished before sending the next. 

2) The server reads an instruction from its TCP window, and executes it, repeating for every 

instruction. However, before all instructions were handled by the server, the client decides to 

cancel the remaining instructions.  

With just one stream of data, it’s not possible to notify the server of any new requests before all 

previous requests have finished processing. In modern layer 7 protocols, this issue is solved by explicitly 

using more than one stream of data. TCP, however, provides a method to send this Urgent data over the 

same established layer 4 connection. 

Almost all modern OSs provide a standard MSG_OOB flag that can be passed to the send/recv system 

calls to send and receive this out-of-band (OOB) data over a TCP socket. A buffer sent as OOB data will 

not be received by a regular recv() call (that only receives ordered data), and a recv() call with the 

MSG_OOB flag set will only receive this OOB data. 

At the TCP segment level, this feature is implemented by an URG flag and an Urgent Pointer field that 

exists in every segment. If the URG flag is set, the Urgent Pointer indicates the offset in the stream (from 
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the relative Sequence Number) where the urgent data is located. Usually the urgent data itself will also 

appear in that same segment. 

This sounds simple enough, however the exact meaning of the Urgent Pointer is not well defined - it is 

unclear whether it points to the last byte of the ordered data, or the first byte of the urgent data. In 

addition, it is unclear how one can define the length of the urgent data, having only a pointer that 

indicates where it starts, but not where it ends. 

Multiple RFCs dating back to the early 1980s have produced contradicting answers to these questions: 

RFC 793 (1981, page 17) states: 

The urgent pointer points to the sequence number of the octet following the urgent data. 

However, RFC 1011 (1987, page 8) states: 

Page 17 is wrong. The urgent pointer points to the last octet of urgent data (not to the first octet of 

non-urgent data). 

And RFC 1122 (1989, page 84) reinforces this approach: 

..the urgent pointer points to the sequence number of the LAST octet (not LAST+1) in a sequence of 

urgent data. 

Finally, the latest RFC to handle this issue (RFC 6093 [2011, pages 6-7]) concludes: 

Considering that as long as both the TCP sender and the TCP receiver implement the same semantics 

for the Urgent Pointer there is no functional difference in having the Urgent Pointer point to ‘the 

sequence number of the octet following the urgent data’ vs. ‘the last octet of urgent data’, and that all 

known implementations interpret the semantics of the Urgent Pointer as pointing to ‘the sequence 

number of the octet following the urgent data’. 

So since virtually all existing TCP implementations handle the urgent pointer as the sequence number of 

the octet following the urgent data, this should be the default behavior of all stacks going forward. 

As to the length of the urgent data, RFC 6093 (page 5) also states this: 

If successive indications of ‘urgent data’ are received before the application reads the pending 

‘out-of-band’ byte, that pending byte will be discarded (i.e., overwritten by the new byte of ‘urgent 

data’). 

Concluding that the urgent data should always be one octet (byte). 

Due to the various intricacies of the Urgent Pointer mechanism, some implementations (VxWorks 

included) were forced to support an RFC-1122 compatible mode, and a non-compatible mode - where 

the Urgent Data would either point ±1 of the calculated urgent pointer. 
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This, combined with the fact that the whole feature itself is esoteric, resulted in it being poorly 

implemented and tested by the various OSs. For example, the Windows NT/95 WinNuke bug described 

earlier in this document was triggerable simply by sending any OOB data to the machine, as it was 

always mis-handled by the TCP driver resulting in a blue screen of death. 

TCP in the IPnet stack 

In VxWorks’ IPnet stack the TCP protocol is implemented in iptcp/src/iptcp.c. Each TCP segment received 

by the stack is processed by iptcp_input: 
 

int __cdecl iptcp_input(int a1, int a2, int (__cdecl *socklookup)(...)) 

{ 

  ... 
  // Lookup the TCP socket based on the incoming 4-tuple 
  // (This would match the TCP listening socket, for a SYN on new 4-tuple) 
  sock = socklookup(...); 
  ... 

  // If the packet matched a listening socket, create a new socket using it's 4-tuple 
  if (sock->tcb->flags & 1) 
      sock = iptcp_handle_passive_open(...); 
  ... 

  // Process TCP options (this might lead to CVE-2019-12260 or CVE-2019-12259) 

  if ( iptcp_process_options(...) < 0 ) { 
 

    iptcp_send_reset(...); 
    return 0; 
  } 

  return_code = iptcp_deliver(...); 
  ... 

} 

Simplified decompilation of iptcp_input 

The function iptcp_input tries to match every incoming segment to an existing TCP socket, using the 

socklookup callback. A segment may also match a listening socket, if the 4-tuple doesn’t match an 

existing socket, but the destination IP and port do match those of a bound listening socket. In this case, 

an additional call to iptcp_handle_passive_open performs extra logic, ending up with the creation of a 

new client socket for this connection, that does match the 4-tuple. This socket then becomes the new 

matched socket from that point on. All validations of the first SYN packet are done by 

iptcp_handle_passive_open, for example - drop any SYN packet that is also a FIN. 

After some additional checks, the segment is passed on to iptcp_deliver, which handles a segment in the 

context of a TCP socket (tcb): 
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int __fastcall iptcp_deliver(_DWORD *a1) 

{ 

  if ( tcb->state == 2 )  {       // LISTEN_STATE 
    result = iptcp_deliver_state_listen(...); 
  } else if ( tcb->state == 3 ) { // SYN_SENT_STATE 
    result = iptcp_deliver_state_syn_sent(...); 
  } else { 
    result = iptcp_deliver_state_syn_rcvd_or_higher(...); 
  } 

  ... 

  if ( pkt->flags & 0x2000 ) { // Check if URG flag in TCP pkt  

    tcb->urg_ptr = p->seg.seq_start + htons(pkt->urg_ptr); 
    tcb->flags |= 0x80000; // TCB_STATE_URG_RECEIVED 
    ... 

  } 

  if ( pkt->flags & 0x100 ) { // Check if FIN flag in TCP pkt 
    ... 

    // Handle the FIN bit, depending on the current TCB state 

    switch ( tcb->state ) { 
      ... 

      default: 
        return -22; 
    } 

  } 

  .... 

  // Process the segment data 
  result = iptcp_deliver_data(v2); 
  if ( tcb->state != newState ) { 
     // If the state has changed, apply it to the tcb 
     ... 

     result = iptcp_change_state(tcb->sock, newState); 
  } 

  ... 

} 

Simplified decompilation of iptcp_deliver 

First, this function checks the state of the socket. If it was just created, the first segment will be handled 

by iptcp_deliver_state_listen or iptcp_deliver_state_syn_sent in a special way. The Initial Sequence 

Number from the peer will initialize tcb->recv.seq_next, which is the next in-order sequence number for 

this socket. After additional handling, such as handling the URG and FIN flags, the segment may be 

passed into iptcp_deliver_data. This is where the TCP window is managed. Once in-order data becomes 

available, it will eventually be appended to the sock->rcv_tail list, which is the list recv() calls pull data 

from. An overview of the flow, starting at the iptcp_input function, and ending in a user application 

calling recv(), looks like this: 
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Call flow from TCP segments to recv calls 

From the userland code, a call to recv() will use iptcp_usr_get_from_recv_queue to pull data from the 

sock->rcv_tail queue. Prior to that, however, this function also handles any Urgent Data that has been 

received as well, accessing the state variable tcb->recv.urg_ptr. As seen in the decompilation snippet 

above, this state variable is updated in iptcp_deliver each time a segment with an URG flag is received. 

TCP Urgent data issues in the IPnet stack 

When iptcp_deliver receives a segment with the URG flag set, the FLAG_RECEIVER_URG flag in tcb->flags 

is set and the tcb->recv.urg_ptr value is calculated as the offset in the TCP window where the urgent 

data begins. Later, this value is used by iptcp_usr_get_from_recv_queue when called from a recv() call. 

This value is important for all recv calls and not just for MSB_OOB calls, as any Urgent Data present in 

the segment must not be returned from a regular recv call. Therefore, this value is used to know which 

bytes to drop from the returned buffer. Below is the code responsible for this flow: 
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// Urgent Data is present, but not requested with the MSG_OOB flag 

if ((int32)(tcb->recv.urg_ptr - len + 
            tcb->recv.seq_next - sock->ipcom.rcv_bytes) <= 0) 

{ 

    // Calculate the urgent data offset inside the window, in order to 
    // copy data up to, but not including the urgent data 

    len = tcb->recv.urg_ptr - 1 - tcb->recv.seq_next + sock->ipcom.rcv_bytes; 
} 

Simplified decompilation, from iptcp_usr_get_from_recv_queue  

when handling a regular recv() with URG data present 

This code changes the len variable in case Urgent Data was inserted into the TCP window so that the 

current recv() call is affected. As illustrated: 

 

Data that should be received Urgent data  Other data in the window 

 ^ requested len 

The recv() call requested a read of size len, but this would include the Urgent Data 

The purpose of the code above is to shorten the len in this case, so that the user receives less data than 

requested, without any OOB data that was not requested: 

Data that should be received Urgent data  Other data in the window 

 ^ modified len 

 

We’ll henceforth refer to the above len shortening calculation as the urgent data offset calculation. 

As mentioned earlier, due to the various intricacies of the Urgent Pointer mechanism, VxWorks includes 

a RFC-1122 compatible mode, and a non-compatible mode - where the Urgent Data points to ±1 of the 

calculated urgent pointer. However, by default, VxWorks doesn’t support RFC-1122 compatible mode, 

thus the above urgent data offset calculation subtracts 1 from the tcb->recv.urg_ptr to calculate where 

the Urgent Data starts. 

All of the 3 state variables referenced in the code above are unsigned 32 bit integers, as is the len 

variable to which the above calculation is written to. We have discovered 4 different vulnerabilities, in 

various code flows, all eventually cause the calculation of the urgent data offset to underflow causing 

the len variable to become a huge unsigned integer. 

The first of these vulnerabilities (Urgent Pointer = 0) results in an off-by-one calculation, and the other 

three variants are caused by various state confusion states that lead the tcb->recv.urg_ptr and 

tcb->recv.seq_next variables to be in an inconsistent state with one another. The urgent data offset 

calculation works under the assumption that the Urgent Pointer (tcb->recv.urg_ptr) is always in front of 

the sequence number that the TCP window begins with, calculated by tcb->recv.seq_next - 
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sock->ipcom.rcv_bytes. Once this assumption breaks, the calculation can result in an integer underflow, 

and len will become a huge unsigned integer. 

Since len is the limitation passed by the user to a recv() call, this effectively allows an attacker to disable 

the length check altogether. This renders any userspace code using recv on a TCP socket vulnerable to 

an overflow of the local receive buffer. For example: 

 

char buf = 0; 
... 

recv(socket_fd, &buf, 1); 

This usually safe code that receives only 1 byte into a stack variable now becomes a stack overflow. The 

overflow length is controlled by the attacker, that chooses how much data to put into the TCP window. 
Despite the len becoming a huge number, the amount of data actually written will still be limited by the 

amount of data available in the window. So, as long as the buffer passed to recv() is smaller than the TCP 

window of the established connection, an overflow will occur. The buffer passed to recv() may be 

allocated either in the stack, heap or the application’s global data section which means an overflow of 

this buffer will result in varying effects once triggered. The exploitation process of such an overflow will 

have to vary accordingly. 

Each of the discovered Urgent Pointer vulnerabilities affects a different set of VxWorks’ versions, but 

combined they span from version 6.5 and above. The following sections will detail the four different 

code flows in which the above overflow can be triggered. 

TCP Urgent pointer = 0 integer underflow (CVE-2019-12255) 

As shown previously, a TCP connection’s Urgent Pointer is set in the variable tcb->recv.urg_ptr in a code 

flow inside iptcp_deliver. In VxWorks’ versions 6.9.3 and below this code flow looks like this: 

 

  if ( pkt->flags & 0x2000 ) { // Check if URG flag in TCP pkt  

    tcb->urg_ptr = p->seg.seq_start + htons(pkt->urg_ptr); 
    tcb->flags |= 0x80000; // TCB_STATE_URG_RECEIVED 
    ... 

  } 

If the urgent_pointer field in the received TCP segment header is set to 0, tcb->recv.urg_ptr will be equal 

to p->seg.seq_start, which is the Sequence Number of the received segment. Then, when the user of the 

socket will perform a recv() operation on the socket, the code presented in the section above (inside 

iptcp_usr_get_from_recv_queue) will be triggered. 

The condition of the if in the function iptcp_usr_get_from_recv_queue shown in the section above can 

thus be re-written by substituting for equivalent values: 
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(int32)(tcb->recv.urg_ptr - len + tcb->recv.seq_next - sock->ipcom.rcv_bytes) <= 0 
⇔ (int32)(p->seg.seq_start + 0 - len - p->seg.seq_start) <= 0 
⇔ (int32)(0 - len) <= 0 

Note that p->seg.seq_start equals tcb->recv.seq_next - sock->ipcom.rcv_bytes for the last received 

segment. Therefore this condition is always true when the urgent_pointer was set to 0 in the last 

received segment. Then, len is supposed to be shortened by the urgent data offset calculation (as 

mentioned in the above section), however: 

 

   tcb->recv.urg_ptr - 1 - tcb->recv.seq_next + sock->ipcom.rcv_bytes 
⇔ p->seg.seq_start - 1 - (p->seg.seq_start) 
⇔ -1 

The function tries to evaluate the offset to an Urgent Data that is out of bounds (0), which results in -1. 

Since len is an unsigned integer, this means it will now equal 0xffffffff. As mentioned above, this causes 

the length constraint set by the user in the recv() call to be ignored,  resulting in turn in a copy of all the 

available data from the TCP window to the user supplied buffer. 

In VxWorks’ version 6.9.4 an additional validation on the Urgent Pointer was added in iptcp_deliver: 
 

    if ( flags & 0x2000) { // Check if URG flag in packet 
      tcb_flags = tcb->flags; 
      if ( tcb_flags & 0x80000) { // Check if URG was already received 
         ... 
      } else { 
        urgent_pointer = input_tcp_header->urgent_pointer; 
        error_retval = 1; 
        if ( !urgent_pointer ) 
          return error_retval; 

Decompilation snippet from iptcp_deliver 

This fixes exactly the issue detailed above, preventing urgent_pointer from being set to 0. However, 

unfortunately, this change was not considered as a security fix, and wasn’t backported to prior versions 

of VxWorks. All real world products we’ve examined, that were running versions of VxWorks 6.9.3 or 

prior, were vulnerable to this vulnerability. 

TCP Urgent Pointer state confusion caused by malformed TCP AO option (CVE-2019-12260) 

While the Urgent Pointer = 0 bug from above was fixed since VxWorks version 6.9.3, the iptcp.c module 

had undergone other refactoring in the meantime. Some of the new features that were added, like the 

handling of a new AO TCP option, introduced even deeper bugs to the code. 

In VxWorks versions above 6.9.3, support for the TCP AO option (Authentication Option, RFC-5925) was 

added. This appears to be included by default, and is indeed supported by the VxWorks images of 

URGENT/11 – ©2019 ARMIS, INC.  – 25 TECHNICAL WHITE PAPER 



 

products we’ve examined. The vulnerability presented below does not depend on the TCP AO to be 

actually enabled or used, since it is always parsed by the TCP module. 

The following flow will occur inside iptcp_input for an incoming SYN packet from a client that is 

establishing a new connection: 

 

  ... 
  new_client_sock = iptcp_handle_passive_open(src_ip, dst_ip, &params); 
  ... 
  tcb = new_client_sock->tcb; 
  ... 
  tcp_options_size = ((tcp_segment_offset_flags & 0xF0) >> 2) - 20; 
  tcp_options_ptr = &tcp_header_ptr[1]; 
  if ( tcp_options_size > 0 ) 
  { 
    index = 0; 
    while ( 1 ) 
    { 
      opt_ptr = &tcp_options_ptr[index]; 
      opt_kind = *opt_ptr; 
      ... 
    } 
    if ( opt_kind == TCP_OPTION_AO ) 
    { 
      opt_len = opt_ptr[1]; 
      if ( opt_len <= 3u ) 
      { 
        iptcp_ao_log(6, "discard the segment since TCP-AO...", ...); 
        goto FreeAndExit; 
... 
FreeAndExit: 
... 
    ipcom_pkt_free(pkt); 
    return 0; 

Snippet from a decompilation output from a binary image, inside iptcp_input 

The support for the TCP AO option was added to the familiar iptcp_input resulting in some changes to 

the function. The function iptcp_handle_passive_open will be called when a SYN arrives on a listening 

socket, and a new socket object will be created for the incoming connection. This socket will now be 

added to the destination cache, so that it will match any new TCP segment arriving from the same TCP 

connection 4-tuple (IP src/dst and Port src/dst). Immediately thereafter the code will look for an AO 

Option (TCP_OPTION_AO) in the TCP option header and attempt to parse it if found. 

Now, assume an attacker added a malformed TCP_OPTION_AO option to that very first SYN packet, like 

some 1 byte value for the option - which is too short, per the condition opt_len <= 3. The check will fail, 

and iptcp_input will simply drop the packet and return. However, the new socket that was created by 

iptcp_handle_passive_open will not be destroyed. 
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At this point, a socket object that will match any incoming TCP segment on the connection’s 4-tuple still 

exists, however, since the SYN packet was not fully processed the new socket will remain in the default 

LISTEN_STATE state. Now an attacker can send a new (#2) SYN packet, which will not be processed by 

iptcp_handle_passive_open, since it arrived to an already existing client socket (and not to the listening 

socket). Since iptcp_handle_passive_open doesn’t process this new SYN packet, the following validations 

are not performed by it: 

 

if ((p->seg.flags_n & TCP_SYN_FLAG) == 0) || 
    (p->seg.flags_n & (TCP_FIN_FLAG | TCP_URG_FLAG | TCP_PSH_FLAG)) != 0) { 
    // Validate that SYN packet doesn’t have FIN, URG, or PSH flags turned on. 
    ... 
    return 0; 

Validations of initial SYN packet, done in iptcp_handle_passive_open 

Now assume that the attacker has set the flags URG and FIN together with SYN in this new (#2) SYN 

packet. This new packet will bypass the checks above as an otherwise valid packet, continue the flow 

and arrive to iptcp_deliver. In there it will be handled according to the tcb state: 

 

  if ( tcb->state == 2 )  {       // LISTEN_STATE 
    result = iptcp_deliver_state_listen(...); 
  } else if ... 

Following this, the function iptcp_process_syn will be called by iptcp_deliver_state_listen, performing 

the following: 

 

   tcb->recv.seq_next = p->seg.seq_start; 

The recv.seq_next of the socket will now be set to the Initial Sequence Number chosen by the attacker in 

this SYN/URG/FIN (#2) packet. Let that number be denoted as sequence_a. 

The flow continues in iptcp_deliver, and immediately enters this (familiar) flow: 

  if ( pkt->flags & 0x2000 ) { // Check if URG flag in TCP pkt  

    tcb->urg_ptr = p->seg.seq_start + htons(pkt->urg_ptr); 
    tcb->flags |= 0x80000; // TCB_STATE_URG_RECEIVED 
    ... 

  } 

Therefore, assuming tcp_hdr->urgent_pointer = 1 (a valid non-zero value), the variable tcb->recv.urg_ptr 

is assigned the value p->seg.seq_start + 1 = sequence_a + 1. 

The flow continues in iptcp_deliver, but immediately encounters the following check: 
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  if ( pkt->flags & 0x100 ) { // Check if FIN flag in TCP pkt 
    ... 

    // Handle the FIN bit, depending on the current TCB state 

    switch ( tcb->state ) { 
      ... 

      default: 
        return -22; 
    } 

  } 

Since the state of the socket is still not valid for a FIN to be received, this check fails and an error is 

returned from itpcp_deliver back to iptcp_input. The state of the socket (tcb->state) is thus not changed 

yet again, and remains LISTEN_STATE! As for iptcp_input, it now simply drops this packet due to the 

error, but the socket itself still remains alive. Notably, the TCB_STATE_URG_RECEIVED is left set on the 

socket, and the recv.urg_ptr retains the value sequence_a + 1. 

Finally, at this point a valid (#3) SYN packet is sent to this socket on the 4-tuple, with an Initial Sequence 

Number value sequence_b. Assume that sequence_b = sequence_a + 1000000. This is a fully valid SYN 

packet, and it will be handled by the code as intended. A SYN/ACK will be sent back to the attacker, and 

the attacker will respond with an ACK to finalize the handshake. Additionally, the attacker may include 

up to 64k bytes of data with this ACK segment, which will be added to the TCP receive window of the 

socket. 

Only now will the state of the socket become ESTABLISHED_STATE, and a user waiting on an accept() call 

will be handed the client socket. Then the user will likely call recv() on the socket. At this point, the 

familiar code in iptcp_usr_get_from_recv_queue will be executed: 

 

  ... 

  if (tcb->flags & 0x80000))) { // TCB_STATE_URG_RECEIVED 
    ... 

    if (iptcp_at_mark(sock)) { 
      ... 

    } else if ((int32)(tcb->recv.urg_ptr - len + 
                tcb->recv.seq_next - sock->ipcom.rcv_bytes) <= 0) {  
      // Calculate the urgent data offset inside the window, in order to 
      // copy data up to, but not including the urgent data 

      len = tcb->recv.urg_ptr - 1 - tcb->recv.seq_next + sock->ipcom.rcv_bytes; 
    } 

The TCB_STATE_URG_RECEIVED is still set at this point, and the recv.urg_ptr retains its value too. 

Therefore, the else-if condition is checked, and can now be substituted with its matching values: 

 

(int32)(tcb->recv.urg_ptr - len + tcb->recv.seq_next - sock->ipcom.rcv_bytes) <= 0 
⇔ (int32)(sequence_a + 1 - len - sequence_b) <= 0 
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⇔ (int32)(sequence_a + 1 - len - sequence_a + 1000000) <= 0 
⇔ (int32)(-len - 999999) <= 0 

Therefore the check is passed, and len will be set by the urgent data offset calculation as such: 

 

   tcb->recv.urg_ptr - 1 - tcb->recv.seq_next + sock->ipcom.rcv_bytes 
⇔ sequence_a + 1 - 1 - (sequence_a + 1000000) 

⇔ -1000000 

Therefore, len will now equal -1000000, and since len is an unsigned 32-bit integer, it will now equal a 

very large number, voiding any user defined restrictions. Similar to the previous Urgent Pointer 

vulnerability described above, this will result in trivial overflows in any code that performs recv() on this 

TCP socket.  

A 5-way-handshake 

The following wireshark capture shows the TCP-AO state confusion attack described above. The target 

device (192.168.108.10) has a server listening on TCP port 59747: 

 

Wireshark capture of the attack packets 

 

TCP options field of the first packet from the capture above 

As you can see, the first 3 packets from the attacker to the target have the SYN flag set: 

1) The first packet has a malformed TCP-AO option (shown in the second capture) 

2) The second packet has Seq = 0 and the URG, FIN flags are set. The Urgent Pointer is also set to 

10 (an arbitrary non-zero value) 

3) The third packet has Seq = 1000000 and is otherwise valid 

A non-vulnerable TCP stack should have returned an RST packet for each of the first 2 packets. However, 

in the case of a vulnerable IPnet stack, these packets are handled in an incorrect fashion, resulting in a 

state confusion issue. The end result is an open (connected) socket, which has tcb->recv.urg_ptr set to 

10 and tcb->recv.seq_next set to 1000000. This will cause the urgent data offset calculation to underflow 

during recv() calls, as explained in the sections above. 
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Following the first 3 packets, the target responds with a SYN/ACK, indicating the reception of the 3rd 

SYN packet. The 5th packet is an ACK sent by the attacker to finish the handshake. This ACK packet has a 

payload attached, with a length of 1024. At this point any subsequent recv() call on the socket will result 

in 1024 bytes written into the user buffer, regardless of the len passed by the user. 

If the TCP server on port 59747 performs a recv() of a shorter length, a memory corruption will occur. 

Moreover, the attacker controls the overflow data, as it’s the data that was sent in the ACK packet. 

 

Series of C-interp calls simulating a listening server on a VxWorks BSP VM 

The screen capture above is from a VxWorks BSP VM running v6.9.3. Here, fd = 5 is the listening socket 

of the server which was opened prior. After the attack is performed, the server accepts() the attacker 

connection, resulting in an open client socket (fd = 6). Then a recv() of length 10 is performed. However, 

1024 bytes are written (!) as indicated by the return value of recv which results (in this case) in a heap 

overflow. 

TCP Urgent Pointer state confusion during connect() to a remote host (CVE-2019-12261) 

The previous code flows where achievable when a target device was acting as a TCP server, and an 

attacker initiated a connection with that server. An additional Urgent Pointer vulnerability variant exists 

when a VxWorks device running version 6.7 or above creates an outbound TCP connection. In this state, 

an exploitable state confusion is possible during a connect() call on a TCP socket, after the target device 

sends a SYN packet to a remote TCP port. If an attacker responds to this SYN with a specially crafted 

SYN/ACK, a similar issue with urgent pointer handling arises as in the previous section of this document. 

To exploit the issue, an attacker needs to be in either of the following positions: 

1) Coerce the target device to create a TCP connection to a malicious host. 

2) Be in a Man-in-the-middle (MiTM) position between the target device and a legitimate host that 

it connects to, which can be easily achieved for an attacker on the LAN. 

After a connect() call is made by the user application, a SYN packet is sent to the peer, and the socket 

enters the SYN_SENT_STATE state. At this point, a SYN/ACK packet is expected to arrive to iptcp_deliver. 
When a packet arrives in this state, the iptcp_deliver_state_syn_sent will be called: 

 

if (p->seg.flags_n & 0x1000) { // TCP_ACK_FLAG 
    ... 
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    *newState = ESTABLISHED_STATE; 
} 

... 

if (p->seg.flags_n & 0x200) { // TCP_SYN_FLAG 
    ... 

    iptcp_process_syn(p); 
    return 2; 

} 

If the received packet indeed had the SYN and ACK flags set, iptcp_process_syn is called, and 

tcb->recv.seq_next is assigned the value p->seg.seq_start which is the Initial Sequence Number inside 

the SYN/ACK packet. This value is attacker controlled, and shall be denoted as sequence_a. Note that 

*new_state does not actually set the tcb state yet. This is supposed to happen later, inside iptcp_deliver. 

Now, assume that the attacker has added the FIN and URG flags to the SYN/ACK packet, creating a 

SYN/ACK/FIN/URG (#1) response instead of a regular SYN/ACK. The code flow shown above happens 

exactly the same way as with a regular SYN/ACK. There are no checks against the existence of the FIN 

and URG flags in iptcp_deliver_state_syn_sent (or before).  

The rest of the flow inside iptcp_deliver will set the tcb->recv.urg_ptr (which is set to sequence_a + 1) 
and then abort further processing due to the unexpected FIN. Therefore, the state of the tcb is again not 

updated, and thus remains SYN_SENT_STATE.  

An attacker can now send another SYN/ACK (#2) packet. This time it will be a valid SYN/ACK, but with an 

Initial Sequence Number denoted as sequence_b.  Additionally, the attacker may include up to 64k bytes 

of data with this SYN/ACK segment, which will be added to the TCP receive window of the socket. Only 

now the state of the socket will become ESTABLISHED_STATE, and the connect() call will return. 

However, at this point, there is again a disparity between the value of tcb->recv.urg_ptr (derived from 

sequence_a) and  tcb->recv.seq_next (derived from sequence_b). To reiterate, this will cause any recv() 

call on the socket to corrupt memory in an attacker controlled fashion, resulting in RCE. 

TCP Urgent Pointer state confusion due to race condition (CVE-2019-12263) 

The last Urgent Pointer vulnerability variant we discovered is a race condition affecting all VxWorks’ 

devices that use the IPnet stack (v6.5 and above) and can result in a state confusion of the urgent 

pointer. Similar to the previous examples which demonstrated the result of this type of state confusion, 

this race condition could result in a memory corruption of a user task buffer that can lead to remote 

code execution triggerable on a target device acting either as a TCP server, or a TCP client. 

The race condition results from the fact that various variables represent the state of the urgent pointer 

as a whole but might be individually changed by the kernel task (tNet0) while a user task is accessing 

them (in iptcp_usr_get_from_recv_queue). This may occur if the user task is running in a different 

priority than the kernel task, or if SMP (Symmetric Multi-Processing) is in use in a multi-core 

environment. There is no lock or mutex to prevent a race condition of this nature from occurring. 
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The various variables that together represent the state of the urgent pointer can be seen in this familiar 

code in iptcp_usr_get_from_recv_queue: 
 

  ... 

  if (tcb->flags & 0x80000))) { // TCB_STATE_URG_RECEIVED 
    ... 

    if (iptcp_at_mark(sock)) { 
      ... 

    } else if ((int32)(tcb->recv.urg_ptr - len + 
                tcb->recv.seq_next - sock->ipcom.rcv_bytes) <= 0) {  
      // Calculate the urgent data offset inside the window, in order to 
      // copy data up to, but not including the urgent data 

      len = tcb->recv.urg_ptr - 1 - tcb->recv.seq_next - sock->ipcom.rcv_bytes; 
    } 

This code assumes that the TCB_STATE_URG_RECEIVED is set in conjunction to setting the 

tcb->recv.urg_ptr variable. It also depends on tcb->recv.seq_next and sock->ipcom.rcv_bytes being set at 

the same time, and that tcb->recv.urg_ptr is set in conjunction with these variables as well. 

For example, if the len calculation inside is preempted between fetching the sock->ipcom.rcv_bytes 

value and the tcb->recv.seq_next value, any new segment received in the meantime will increase the 

difference between the two fetched values in this function arbitrarily. This will enable an attacker to 

underflow len, causing the vulnerable condition described prior. Other examples of this race condition 

that will result in this underflow are also possible. 

Such a race condition is possible if the priority of the task that performs the recv() call is lower than the 

IPnet task’s priority, so that it will be preempted immediately once a new packet is received from the 

network. In any case, it is also possible on multi-core SMP systems regardless of priorities. 
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Heap overflow in DHCP Offer/ACK parsing in VxWorks’ DHCP client (ipdhcpc) 

TL;DR 

A heap overflow vulnerability exists in VxWorks’ DHCP client when parsing incoming DHCP Offer and 

ACK packets. An attacker on the LAN can trigger this vulnerability by sending a specially crafted DHCP 

Offer packet to a target device that has sent a DHCP Discover packet or by sending a DHCP ACK packet in 

response to a target device that has sent a DHCP Request packet. This overflow contains attacker 

controlled bytes, and can lead to remote code execution. 

Background - DHCP options 

The DHCP protocol allows automatic network configurations for all devices on a LAN. Prior to DHCP, 

each machine had to be configured manually with an IP address, subnet mask and default gateway IP. 

DHCP utilizes a central server which answers to “DHCP request” broadcasts with Offers that contain 

network configurations. 

Every device on the network that desires to be configured by the central DHCP server, runs a local DHCP 

client daemon. This daemon sends a broadcast and waits for the configuration to arrive from a server. 

This communication takes place over UDP ports 67 and 68. The structure of an Offer packet that arrives 

as a response to a client is illustrated below: 

 

Note the variable length options list at the end of the packet 
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An attacker on the LAN will also receive all DHCP discover broadcasts sent on the network, and will be 

able to respond to them, as the protocol includes no authentication.  

The VxWorks ipdhcpc DHCP client daemon has a heap overflow vulnerability since version 6.7 and above 

in the parsing of those DHCP Offer packets. The vulnerability can be triggered  by an attacker on the LAN 

who responds with a specially crafted DHCP Offer packet to a target device that has sent a DHCP 

Discover packet. The same also applies for the DHCP ACK packet, in response to a DHCP Request packet. 

The vulnerability (CVE-2019-12257) 

The DHCP Offer (and ACK) packet ends with a variable length options array. The ipdhcpc daemon 

allocates space on the heap for the incoming options inside ipdhcpc_handle_malloc: 
 

... 

handle->info.options = ipcom_malloc(ipdhcpc.max_message_size - 264); 

The buffer is thus allocated to the size ipdhcpc.max_message_size - 264. Later, when the daemon is 

waiting to receive a response packet, a recvfrom() call is performed inside the main loop of 

ipdhcpc_daemon: 
 

ipdhcpc.in_pkt_len = ipcom_recvfrom(ipdhcpc.fd, 
                                    ipdhcpc.in_pkt, 
                                    ipdhcpc.max_message_size, 
                                    ...); 

A packet of at most ipdhcpc.max_message_size bytes is received here, and its received length is set in 

ipdhcpc.in_pkt_len. The flow continues to parse the packet, arriving in ipdhcpc_reply_input, where the 

length of the incoming options is calculated based on ipdhcpc.in_pkt_len: 

 

  handle->priv->in_optlen = ipdhcpc.in_pkt_len - 240; 

Later, the flow continues to ipdhcpc_offer_input (or ipdhcpc_ack_input), where the following memcpy() 

will occur: 

 

handle->info.optlen = handle->priv->in_optlen; 
ipcom_memcpy(handle->info.options, 
             &ipdhcpc.in_pkt->options[4], 
             handle->info.optlen); 

Note that the maximum value for ipdhcpc.in_pkt_len is ipdhcpc.max_message_size. Therefore the 

maximum value for handle->priv->in_optlen can be ipdhcpc.max_message_size - 240, which is greater 
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than the space allocated for handle->info.options, chosen to be ipdhcpc.max_message_size - 264. This 

results in a 24 byte heap overflow with attacker controlled data. 

The structure of ipcom_malloc heap blocks consists of 16 bytes of metadata, and an 8 byte alignment 

trailer. Therefore, 24 bytes are exactly enough to corrupt the metadata of the next block, making RCE 

achievable. 

Interestingly, a similar vulnerability in the parsing of DHCP options was found in the Windows 10 DHCP 

client recently, known as CVE-2019-0547. A good writeup is available here. 
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Five Logical errors, DoS and Information Leak vulnerabilities 

In addition to the six RCE vulnerabilities described in previous sections, we have also discovered five 

additional vulnerabilities that result in either logical errors, denial of service, or information leaks. 

These vulnerabilities where found in various subsystems of the TCP/IP stack - TCP, IGMP, DHCP, and 

even in the very ancient Reverse ARP (RARP) protocol. The following sections will describe these 

vulnerabilities. 

TCP connection DoS via malformed TCP options (CVE-2019-12258) 

This issue affects all VxWorks’ versions that use IPnet (version 6.5 and up). An attacker can send a 

specially crafted TCP packet with the 4-tuple of an existing connection, but without knowing the 

sequence numbers of that connection, which will cause the connection to drop. This ability can allow an 

attacker a denial-of-service for any TCP connection to or from an affected VxWorks device. 

The specially crafted TCP packet contains illegal IP options, causing the function iptcp_process_options 

to fail: 

 

int __fastcall iptcp_process_options(_DWORD *a1, tcp_hdr_t *tcp_hdr) { 

    ... 

    v10 = 0; 
    while (v10 < tcp_options_length) { 
        opt = &tcp_hdr->options[v10]; 
        ... 

        switch (opt->type) 
        { 

        case 2: // TCP_MSS_OPTION_TYPE 

            if (opt->length != 4) 
                // If MSS option isn’t 4 bytes length - break the flow. 

                return -22; 

Simplified decompilation snippet from iptcp_process_options 

The above function may fail and return a negative value error code in various code-flows. For example, if 

a TCP packet with an TCP_MSS_OPTION_TYPE (2) option is received with an option length that is not 4 

bytes the function will fail with -22. 

This function is called by iptcp_input (described in depth in a previous section) and when it fails the TCP 

connection on which it was received is dropped by iptcp_send_reset: 
 

    v32 = iptcp_process_options(&v68, tcp_hdr); 
    if (v32 < 0) 
    { 
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      iptcp_send_reset(...); 
      return 0; 

    } 

Inside iptcp_input 

So, by sending a TCP packet with an invalid TCP options header, a remote attacker can cause the TCP 

connection to disconnect, based solely on the 4-tuple of that connection. 

Handling of unsolicited Reverse ARP replies (CVE-2019-12262) 

One of the most bizarre vulnerabilities we found is a logical error vulnerability in the Reverse ARP (RARP) 

protocol. An attacker on the local LAN can send unsolicited RARP reply packets to a target device (by its 

MAC). These in turn will allow him to add IPv4 addresses to the interface that receives them on the 

target device, which can lead to various denial-of-service attacks. 

RARP is an old protocol (from 1984) that preceded DHCP for the purposes of automatic network address 

configuration. Similarly to DHCP, a client broadcasts a request for an address to be assigned, and listens 

for a response that contains its assigned address. 

In reality, no modern network or device should support RARP since it’s incredibly obsolete and 

practically unused. While the IPnet stack does support RARP, it doesn’t attempt to send a RARP request 

by default. However, responses are still handled. 

 

RARP reply packet that assigns the address 192.168.108.2 

The RARP protocol normally begins with a device broadcasting a RARP request, and then waiting for the 

response (similar to DHCP). However, in the IPnet code, the function ipnet_eth_rarp_input is called for 

every ethernet packet that has the protocol id 0x8035 (The RARP protocol ID): 
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  ... 
  if ( *(_WORD *)rarp_pkt == 256 
    && *(_WORD *)(rarp_pkt + 2) == 8 
    && *(_BYTE *)(rarp_pkt + 4) == 6 
    && *(_BYTE *)(rarp_pkt + 5) == 4 
    && *(_WORD *)(rarp_pkt + 6) == 1024 ) 
  { 
    interface = ipnet_eth_is_valid_node_mac(interface, rarp_pkt + 8); 
    if ( interface ) 
    { 
      // Validate the IP address isn’t class D or E 
      if ( !(*(_WORD *)(rarp_pkt + 24) & 0x80) 
        || (*(_WORD *)(rarp_pkt + 24) & 0xC0) == 128 
        || (interface = *(_WORD *)(rarp_pkt + 24) & 0xE0, interface == 192) ) 
      { 
        ret = ipnet_ip4_add_addr(interface); 
... 

Decompilation snippet from ipnet_eth_rarp_input 

The validations done at the start of this function merely check the validity of the fields of the received 

RARP packet. Later the provided IP address is simply added by ipnet_ip4_add_addr. Additionally, while 

the address being added is checked to be a class other than D or E addresses, it is not verified that the 

address is not the local subnet broadcast address, 127.0.0.1, or other highly invalid values. Lastly, There 

is no limit on the amount of IP addresses that could be added. 

This could be used as DoS, by configuring the target device with multiple IP addresses, so that each of 

those conflicts with other devices on the network, or create invalid routing tables on target device that 

will prevent it from creating any network traffic. 

Logical flaw in IPv4 assignment by the ipdhcpc DHCP client (CVE-2019-12264) 

Similar to the RARP vulnerability, an assignment of invalid IPv4 addresses can be achieved by abusing 

VxWorks’ built-in DHCP client (ipdhcpc). In all VxWorks’ versions that support IPnet (v6.5 and up), the 

DHCP client will accept any IPv4 address assigned to it by a DHCP server, even if this address is not a 

valid unicast address (multicast, broadcast, or other illegal addresses). 

The function ipdhcpc_ack_input will be called when DHCP ACK packets are received, and is responsible 

for assigning the allocated IPv4 address to the interface. The code in ipdhcpc_ack_input will simply take 

the IP address from the incoming DHCP ACK packet and passes it to the IP_SIOCAIFADDR ioctl function 

that will set it on the interface. 

The ability to assign a multicast address to a device, remotely, can lead to problematic scenarios, as will 

be demonstrated in the following sections. 
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DoS via NULL dereference in IGMP parsing (CVE-2019-12259) 

If an attacker is able to force the assignment of a multicast IP address on a target device via the issue 

described in the previous section - a NULL dereference that leads to a crash of the network task (tNet0) 
may be achieved through an IGMPv3 membership query packet sent to a target device. This vulnerability 

affects all VxWorks’ versions that support IPnet (v6.5 and up). 

When a multicast address is assigned to a target device via the DHCP client the multicast address object 

in the network interface is not initialized properly. In this state, an attacker can send an IGMPv3 

membership query packet to the target device that would lead to a NULL dereference in the function 

ipnet_igmpv3_create_membership_report. In most applications, this would result in a crash of the 

network task (tNet0) since the address 0 will not necessarily be mapped, and a page fault would occur. 

To trigger this vulnerability an attacker will first force an assignment of a multicast address on a target 

device via a specially crafted DHCP response packet. Then, he would send an IGMPv3 membership query 

packet to the target device which will be processed by ipnet_igmp_input and an IGMP report will then 

be scheduled to be sent via the function ipnet_igmp_report_specific_query. This function calls the 

ipnet_igmp_report that will attempt to build an IPNET_MCAST_REPORT_SPECIFIC_QUERY report: 

 

... 
v11 = addr_entry->mcast.report_type; 
... 
if (v11 == 2) { 
  v7.set = addr_entry->mcast.filter; 
  v7.group_record->record_type = v7.set->user; 
... 

In this specific case, the variable v7.group_record->record_type will be set to 

addr_entry->mcast.filter->user. However, in this specific flow, the filter pointer inside the mcast object 

will remain set to 0 - so the final dereference (filter->user) will result in a NULL dereference. All other 

cases of the switch case in the above function first validate that the specific set is not NULL before 

dereferencing it. 

When the address 0 is not mapped, this NULL dereference will cause a page fault which would lead to 

the crash of the network stack (tNet0) and result in a DoS for all network related operations of the 

device. 

IGMP Information leak via IGMPv3 specific membership report (CVE-2019-12265) 

A general observation we made led us to this vulnerability which can result in an information leak of the 

packet heap via an IGMPv3 membership query report. The basis of this issue is the introduction of 

scattered packets in the reassembly of fragmented IP packets. In VxWorks’ versions 6.9.3 and up, the 

reassembly of IP fragments is carried out by linking the various fragments via the next_part pointer in 
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the Ipcom_pkt structure. This change can be viewed, for example, in the implementation of the 

ipcom_pkt_get_length function: 

 

int ipcom_pkt_get_length(pkt_object_t *pkt) 
{ 
    if (pkt->next_part == 0) 
        return pkt->end - pkt->start; 
    return (pkt->end - pkt->start) + ipcom_pkt_get_length(pkt->next_part); 
} 

The function iterates over all fragments of the packet, and returns their summed length. It seems, 

however, that not all parts of the IP stack have adjusted for this change, and some functions aren’t 

aware that an IP packet might be scattered. For example, the utility function ipcom_pkt_get_data: 
 

void* ipcom_pkt_get_data(pkt_object_t *pkt, int offset) 

{ 

    return &pkt->data[pkt->start + offset]; 
} 

The offset passed to this function might point beyond the first fragment of the IP packet, in one of the 

additional fragments of the packet, chained to it via the next_part pointer. The returned pointer 

(&pkt->data[pkt->start + offset]) might be outside the valid range of the first fragment (beyond the 

pkt->end).  

An example case of this vulnerability exists In the function ipnet_igmp_input: 

    ... 

    pkt_length = ipcom_pkt_get_length(pkt); 
    igmp_hdr = ipcom_pkt_get_data(pkt, 0); 
    ... 

The pkt_length variable is set using the ipcom_pkt_get_length function, that will return the summed 

length of all the packet’s fragments, but igmp_hdr will point to the first fragment of the packet. The 

code in this function doesn’t validate that the entire igmp_hdr or the payload that follows it actually fit 

in the first fragment. 

Later in this function, a set will be built based on the received IPv4 addresses that will follow the IGMP 

header: 

 

    ... 

    v14 = ntohs(igmp_hdr->data.igmp.number_of_sources) 
    for (v15 = 0; v15 < v14; v15++) 
    { 

        v32  = ipcom_set_add(sources, &igmp_hdr->data.igmp.source_addr[v15 * 2]); 
        ... 
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Snippet from ipnet_igmp_input 

Since the igmp_hdr variable points to the first fragment of the packet, the IPv4 addresses that are being 

added to the set might actually be coming from an out-of-bound read of that first fragment. The 

function does validate that pkt_length contains the needed bytes to avoid parsing out-of-bounds bytes 

from the incoming packet, but since pkt_length is calculated using the entire fragments, this validation is 

not sufficient. 

Continuing in the code-flow of this function we can see that the set containing IPv4 addresses that may 

have been read out of bounds can be returned to the attacker via the 

ipnet_igmpv3_create_membership_report function that will send an IGMP packet containing this 

specific set. 

A device will be affected by this information leak vulnerability if it has a multicast address assigned to its 

network interface (any multicast address that is not the all multicast host address - 224.0.0.1). Using the 

DHCP client vulnerability described above, an attacker can also force the assignment of a multicast 

address on a targeted device remotely. However, since this flow will lack some initialization routines 

that are normally used when a multicast address is assigned the NULL dereference will occur. If the 

address 0 is a valid, mapped address in the target device, the NULL dereference will not crash the 

network stack, and the information leak would then occur. 
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Mitigating the risks of URGENT/11 vulnerabilities 

Mitigating the risks of the vulnerabilities described in this paper is not a trivial task. Unlike OSs that are 

used by consumer devices such as PCs and mobile phones, the underlying operating system used by 

most embedded devices is not regularly advertised. To mitigate the risk of these vulnerabilities, one 

would first need to identify what devices run VxWorks? 

In addition to the difficulty in identifying which devices run VxWorks, device manufacturers are also 

faced with a challenge to provide firmware upgrades within a reasonable time. Many VxWorks devices, 

such as medical and industrial devices, are required to go through extensive testing and certification 

processes before firmware updates can be provided to end-users. Until such updates have been 

provided, how can end-users protect themselves? 

Luckily, there are some unique identifiers for the discovered vulnerabilities that can be used by Firewalls 

and IDS solutions to detect and block any exploitation attempts of these vulnerabilities. 

For example, four of the most critical vulnerabilities we have discovered (CVE-2019-1255, 

CVE-2019-1260, CVE-2019-1261, CVE-2019-1263) use TCP’s Urgent Flag to abuse the Urgent Pointer 

mechanism of TCP. This mechanism is so remote and unused, that creating rules to detect and block any 

use of it can be a sufficient method to detect any attempts to attack a VxWorks device with these 

vulnerabilities. 

Firewall rules to drop any TCP packet that has the Urgent Flag turned on can completely eliminate the 

risk of these 4 vulnerabilities, from attackers coming from the Internet. In addition, IDS solutions can be 

used to detect attacks in internal networks by detecting any use of the Urgent Flag, such as the 

detection done by following Snort rule: 

 

alert tcp any any -> any any (flags: U+; msg: "OS-VXWORKS - Use of Urgent Flag might 

indicate potential attempt to exploit an Urgent11 RCE vulnerability"; 

classtype:attempted-admin; reference:cve,2019-12255; reference:cve,2019-12260; 

reference:cve,2019-12261; reference:cve,2019-12263; reference:url,armis.com/urgent11; rev: 

1; sid:1000002) 

Snort rule to detect any use of Urgent Pointer 

The above rule can cause some false positives, in the rare case when a legitimate TCP connection uses 

the Urgent Pointer (such as RLOGIN connections, or certain TELNET clients). An alternative approach can 

be to limit the detection of the Urgent Pointer vulnerabilities resulting from various state-confusions. 

These require the use of packets that contain both SYN, URG and FIN flags. This combination will never 

occur in legitimate TCP traffic, and the following Snort rule can detect it: 
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alert tcp any any -> any any (flags: SUF+; msg: "OS-VXWORKS Illegal use of Urgent pointer - 

Potential attempt to exploit an Urgent11 RCE vulnerability"; classtype:attempted-admin; 

reference:cve,2019-12255; reference:cve,2019-12260; reference:cve,2019-12261; 

reference:cve,2019-12263; reference:url,armis.com/urgent11; rev: 1; sid:1000001) 

Snort rule to detect use of SYN|URG|FIN packets 

To detect and block attempts to exploit the IP options vulnerability we’ve discovered (CVE-2019-12256) 

one can search for any IP packet that contains the LSRR or SSRR options. These options should never be 

used in modern networks, regardless of the potential RCE vulnerability they present to VxWorks devices. 

Most firewalls will drop any IP packet that contain these packets for security reasons, and IDS solutions 

can detect any use of them using the following Snort rules: 

 

alert ip any any -> any any (ipopts: lsrr; msg: "OS-VXWORKS Use of LSRR option, potential 

attempt to exploit an Urgent11 RCE vulnerability"; reference:cve,2019-12256; 

classtype:attempted-admin; reference:url,armis.com/urgent11; rev: 1; sid:1000003) 

alert ip any any -> any any (ipopts: ssrr; msg: "OS-VXWORKS Use of SSRR option, potential 

attempt to exploit an Urgent11 RCE vulnerability"; reference:cve,2019-12256; 

classtype:attempted-admin; reference:url,armis.com/urgent11; rev: 1; sid:1000004) 

Snort rules to detect any use of LSRR or SSRR options 
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Conclusion 

This research demonstrates some unique vulnerabilities which combine a frightening set of traits: 

Remotely executable vulnerabilities that don’t require any user interaction, affecting a widely used 

operating system that drives mission critical devices. In addition, these vulnerabilities allow for some 

very unique attack scenarios. The IP option vulnerability (CVE-2019-12256) can be used in a broadcast 

packet and hit any vulnerable device in the local LAN at once. An attacker can use this vulnerability 
without even being required to take any reconnaissance steps to find vulnerable devices within a 

network. And the TCP Urgent vulnerabilities (CVE-2019-12255, CVE-2019-1260, CVE-2019-1261, 

CVE-2019-1263) can even be leveraged by an attacker when the target device is located behind a NAT 

and Firewall solutions - which usually provide impregnable security for the devices behind it. 

Although VxWorks includes some optional mitigations that could make some of the URGENT/11 

vulnerabilities harder to exploit, we have not found these mitigations used by device manufacturers. 

In the devices we've examined (and exploited), almost no mitigations were used: no ASLR, no stack 

canaries and no DEP. Unfortunately, the lack of mitigations makes URGENT/11 vulnerabilities 

relatively easy to exploit. 

The frightening set of traits and attack scenarios these vulnerabilities enable emphasize that RTOSs 

should receive much more attention and scrutiny by researchers. The challenge of researching 

closed-source RTOSs should not deter researchers from digging in and continue to uncover 

vulnerabilities that in some cases can affect critical systems for more than a decade. 

URGENT/11 – ©2019 ARMIS, INC.  – 44 TECHNICAL WHITE PAPER 

20190729.1




