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Introduction 

Armis Labs discovered novel methods to exploit Packet-in-Packet attacks in Ethernet cables. These 
methods can be used under certain conditions to bypass perimeter security devices such as firewalls and 
NATs. Bypassing these defenses can allow attackers to mount various attacks: 

1. Penetrate networks directly from the Internet 
2. Penetrate internal networks from a DMZ segment 
3. Move laterally between various segments of internal networks 

The ultimate goal of the methods we explore is to inject fully controlled Ethernet packets in internal 
networks. We will demonstrate how a single Ethernet packet that is injected using these methods can 
be used to allow an attacker to achieve various goals: 

1. Establish a Man-in-the-middle position, from the Internet, on DNS and\or HTTP requests of 
devices in the internal network by injecting a specially crafted broadcast IPv6 Router 
Advertisement. This can be used, for example, to eavesdrop on corporate communications. 

2. Gain full control over devices by exploiting 1-day vulnerabilities such as CDPwn and URGENT/11, 
which include remote-code-execution (RCE) vulnerabilities that can be triggered by a single 
broadcast packet within the network. 

The Ethernet Packet-in-Packet attack has been explored in the past, at a Black Hat talk back in 2013, 
titled “Fully arbitrary 802.3 packet injection”. However, the researcher back then deemed this attack 
impractical for various reasons. Our research presents new methods, and supporting data that indicates 
this attack is more practical than previously considered. 

This document will offer a deep dive into the mechanisms and conditions that allow Packet-in-Packet 
attacks to take place in Ethernet. In addition, this document will detail the various prerequisites for the 
Ethernet Packet-in-Packet to be successful, and the various methods we identified in which these can be 
challenged.  
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Who we are 

Armis Labs is Armis’ research team, focused on mixing and splitting the atoms that comprise the IoT 
devices that surround us - be it a smart personal assistant, a benign looking printer, a SCADA controller 
or a life-supporting device such as a hospital bedside patient monitor. 

Our previous research includes: 

● CDPwn - 5 Zero Day vulnerabilities in various implementations of Cisco’s CDP protocol, used by a 
wide array of their products. The technical whitepaper for this research can be found here: 

○ CDPwn - Breaking the discovery protocols of the Enterprise-of-Things 

● URGENT/11 - 11 Zero Day vulnerabilities impacting VxWorks, the most widely used Real Time 
Operating System (RTOS). The technical whitepaper for this research can be found here: 

○ URGENT/11 - Critical vulnerabilities to remotely compromise VxWorks 

● BLEEDINGBIT - Two chip-level vulnerabilities in Texas Instruments BLE chips, embedded in 
Enterprise-grade Access Points. The technical whitepaper for this research can be found here: 

○ BLEEDINGBIT - The hidden attack surface within BLE chips 

● BlueBorne - An attack vector targeting devices via RCE vulnerabilities in Bluetooth stacks used by 
over 5.3 Billion devices. This research was comprised of 3 technical whitepapers: 

○ BlueBorne - The dangers of Bluetooth implementations: Unveiling zero day 
vulnerabilities and security flaws in modern Bluetooth stacks 

○ BlueBorne on Android - Exploiting an RCE Over the Air 
○ Exploiting BlueBorne in Linux-Based IoT deices 
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Motivation for bypassing NATs/Firewalls 

The majority of 0-click remote-code-execution vulnerabilities require attackers some form of network 

adjacency to the victim device -- either direct IP routing, or even layer 2 adjacency. This includes some of 

the RCEs we discovered ourselves, such as URGENT/11 and CDPwn, but this is also true for other well 

known RCEs such as BlueKeep and EternalBlue, for example. This is simply due to the fact that the 

majority of 0-click RCEs are triggered by maliciously crafted packets that are sent to vulnerable services 

that accept packets coming from the local network. These types of packets are rarely allowed to enter 

the internal network, and are blocked by perimeter security devices such as firewalls and NATs. 

In certain cases, RCE vulnerabilities can even be exploited with a single maliciously crafted packet. 

CDPwn and URGENT/11 contain vulnerabilities that are an example of this. If an attacker gains the ability 

to send a fully controlled packet to a victim device from beyond a network’s perimeter security 

defenses, these types of single-packet RCEs may become reachable for an attacker on the Internet. 

Many organizations put tremendous fate on their perimeter security defenses, in the hope that they will 

prevent the penetration of their networks, and the devices within these networks. This leads to a state 

where many devices are left unpatched, vulnerable to critical vulnerabilities that may be exploited by 

specially crafted packets sent to them within the internal network. Thus, an attacker that is able to send 

fully controlled packets within such networks has tremendous hazardous potential. 

Understanding some of the elementary threats to the design of these perimeter security systems is what 

led us to look at Ethernet Packet-in-Packet attacks in more depth. 

Packet-in-Packet attacks in wireless protocols 

The term Packet-in-Packet was probably first coined by Travis Goodspeed in 2011, when he discovered a 

way to inject fully controlled layer 2 packets in 802.15.4 (layer 2 protocol used by Zigbee) and 802.11 

(Wi-Fi), given the ability to send packets with partially controlled payloads. This sounds quite surprising, 

and it relies on the fact that wireless transmissions are inherently unreliable, and this guarantees that bit 

flips would randomly occur in transmissions, and eventually, the headers of the lower layers of the 

packet may get corrupted. 

When this happens, the receiver of such a packet can be fooled to interpret the payload of the packet as 

an entirely new packet, including the previously uncontrolled low-level headers. An attacker that has the 

ability to even partially control the payload of such packets may be able to inject fully controlled layer 2 

packets.  
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In the example above, YĄ is the syncword of the layer 2 protocol used by Zigbee (802.15.4), and when it 

gets corrupted, the receiver will continue searching for another preamble and syncword inside the 

packet. A crafted payload that contains these magic numbers will get interpreted from that point on as a 

completely new packet. 

A more recent Packet-in-Packet attack was devised in 2015 for non-encrypted Wi-Fi. The paper titled 

6xtfb¨nzx !¨¨Ybu¦ zx ąýÿÎþþx >!* 3¥Ywf !ll¥flY¨nzx describes a method to target the MAC frame 

aggregation feature of Wi-Fi access points to exploit Wi-Fi Packet-in-Packet. 

Ultimately, a similar concept is used whenever Packet-in-Packet attacks are exploited in wireless 

protocols -- partially controlled packet payloads, together with bit flips in the air, resulting in arbitrary 

packet injection.  

The concept of Packet-in-Packet isn’t new, but it was mainly explored in wireless protocols. In our case, 

however, we wanted to explore methods to bypass firewalls and NATs, and these are connected to 

wired networks. Does it even make sense for this to work on wired protocols? 

To answer this question, let’s first dive deeper into the physical attributes of Ethernet. 
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Packet-in-Packet attack in Ethernet 

Ethernet PHYs 

The most popular Ethernet cables are copper cables that use either FastEthernet (which is 100 Mb/s) 

and Gigabit Ethernet. These two PHYs have very different encodings on the physical layer. 

In FastEthernet, the PHY encoding uses 5 bit symbols on the wire for every 4 bits of data: 

 

4B5B Encoding table, as used by FastEthernet PHY (100Mb/s), from Wikipedia 

As can be seen in the table above, the majority of the symbols are data symbols, and additional symbols 

are used for control -- such as ¦¨Y¥¨ zk k¥Ywf and fxd zk k¥Ywf.  Gigabit encoding is different, but it also 

uses a similar approach for delimiting frames by using start and end of frame symbols.  

The important thing to understand is that there isn’t any error detection mechanism at these PHY layers, 

other than the inherent mechanism to detect invalid symbols (not all symbols are valid). So if, for 

instance, a bit flip has occurred on the wire, the PHY layer will be able to detect this zxv± if the corrupted 

symbol is now a non-valid symbol. One data symbol, for example, might get replaced with another data 

symbol, if a bit flip has occurred on the wire. 
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