

Bypassing Firewalls and NATs By Exploiting

Packet-in-Packet Attacks in Ethernet

Ben Seri, Gregory Vishnepolsky and Yevgeny Yusepovsky

6x¨¥zd©b¨nzx ă

Who we are 5

Motivation for bypassing NATs/Firewalls 6

Packet-in-Packet attacks in wireless protocols 6

HYbuf¨ÝnxÝHYbuf¨ Y¨¨Ybu nx .¨mf¥xf¨ ć

Ethernet PHYs 8

Ethernet PHY/MAC Interface (MII) 9

MAC layer framing 9

Packet-in-Packet data flow 10

Calculating the CRC complement 12

Hz¦¦navf Y¨¨Ybu ¢Y±vzYd¦ Āā

IPv6 Router Advertisement 13

IPv6 mapped IPv4 addresses 14

Search domain and WPAD on windows 14

)n¨ f¥¥z¥¦ nx .¨mf¥xf¨ bYavf¦É ĀĄ

Bit-error-rate in Ethernet cables - Survey results 15

Querying Ethernet statistics from Cisco switches 16

ĀÝbvnbu !¨¨Ybu LbfxY¥nz Āą

Hm±¦nbYv vY±f¥ zk .¨mf¥xf¨ Āć

Shielding 18

Types of Ethernet cables 19

Differential noise margin 20

Hz¦¦navf ¥fY¦zx¦ kz¥ an¨ f¥¥z¥¦ nx Yx .¨mf¥xf¨ bYavf āÿ

Excessive attenuation 21

Impedance mismatch influence on the signal propagation 21

EMI susceptibility 21

Crosstalk 22

Excessive EMI 22

Cable measurements setup 22

Detecting cabling faults with a tester 23

Lab reproduction of cabling faults 24

The crosstalk model 25

.¨mf¥Az¢¦ – òāÿāÿ !K>6LË 6?*Î – ā M.*5?6*!= T56M. H!H.K

The short model 26

Model scenario for cables connected in series 28

H¥nwn¨n®f¦ kz¥ Y ÿÝbvnbu Y¨¨Ybu āĈ

Spoofing IPv4 source addresses on the Internet 29

Google DNS 4-tuples 30

Alternative method: ICMP errors 31

3nxdnxl >!* Ydd¥f¦¦f¦ Ăā

Discovering MACs from Wi-Fi monitor mode 33

,n¦bz®f¥nxl Yvvz¯fd ¨¥Ykknb ¨m¥z©lm ¨mf kn¥f¯Yvv ©¦nxl Tn3n ¦xnkknxl Ăă

H¥z°nwn¨± Y¨¨Ybu ©¦nxl Yx .>H df®nbf ĂĄ

Prior research on “EMP simulation” devices 35

Wideband interference generation using a spark-gap radio transmitter 36

Attack model and experimental setup 39

EMP pulse measurements 41

*zxbv©¦nzx ăă

.¨mf¥Az¢¦ – òāÿāÿ !K>6LË 6?*Î – Ă M.*5?6*!= T56M. H!H.K

Introduction

Armis Labs discovered novel methods to exploit Packet-in-Packet attacks in Ethernet cables. These
methods can be used under certain conditions to bypass perimeter security devices such as firewalls and
NATs. Bypassing these defenses can allow attackers to mount various attacks:

1. Penetrate networks directly from the Internet
2. Penetrate internal networks from a DMZ segment
3. Move laterally between various segments of internal networks

The ultimate goal of the methods we explore is to inject fully controlled Ethernet packets in internal
networks. We will demonstrate how a single Ethernet packet that is injected using these methods can
be used to allow an attacker to achieve various goals:

1. Establish a Man-in-the-middle position, from the Internet, on DNS and\or HTTP requests of
devices in the internal network by injecting a specially crafted broadcast IPv6 Router
Advertisement. This can be used, for example, to eavesdrop on corporate communications.

2. Gain full control over devices by exploiting 1-day vulnerabilities such as CDPwn and URGENT/11,
which include remote-code-execution (RCE) vulnerabilities that can be triggered by a single
broadcast packet within the network.

The Ethernet Packet-in-Packet attack has been explored in the past, at a Black Hat talk back in 2013,
titled “Fully arbitrary 802.3 packet injection”. However, the researcher back then deemed this attack
impractical for various reasons. Our research presents new methods, and supporting data that indicates
this attack is more practical than previously considered.

This document will offer a deep dive into the mechanisms and conditions that allow Packet-in-Packet
attacks to take place in Ethernet. In addition, this document will detail the various prerequisites for the
Ethernet Packet-in-Packet to be successful, and the various methods we identified in which these can be
challenged.

.¨mf¥Az¢¦ – òāÿāÿ !K>6LË 6?*Î – ă M.*5?6*!= T56M. H!H.K

Who we are

Armis Labs is Armis’ research team, focused on mixing and splitting the atoms that comprise the IoT
devices that surround us - be it a smart personal assistant, a benign looking printer, a SCADA controller
or a life-supporting device such as a hospital bedside patient monitor.

Our previous research includes:

● CDPwn - 5 Zero Day vulnerabilities in various implementations of Cisco’s CDP protocol, used by a
wide array of their products. The technical whitepaper for this research can be found here:

○ CDPwn - Breaking the discovery protocols of the Enterprise-of-Things

● URGENT/11 - 11 Zero Day vulnerabilities impacting VxWorks, the most widely used Real Time
Operating System (RTOS). The technical whitepaper for this research can be found here:

○ URGENT/11 - Critical vulnerabilities to remotely compromise VxWorks

● BLEEDINGBIT - Two chip-level vulnerabilities in Texas Instruments BLE chips, embedded in
Enterprise-grade Access Points. The technical whitepaper for this research can be found here:

○ BLEEDINGBIT - The hidden attack surface within BLE chips

● BlueBorne - An attack vector targeting devices via RCE vulnerabilities in Bluetooth stacks used by
over 5.3 Billion devices. This research was comprised of 3 technical whitepapers:

○ BlueBorne - The dangers of Bluetooth implementations: Unveiling zero day
vulnerabilities and security flaws in modern Bluetooth stacks

○ BlueBorne on Android - Exploiting an RCE Over the Air
○ Exploiting BlueBorne in Linux-Based IoT deices

.¨mf¥Az¢¦ – òāÿāÿ !K>6LË 6?*Î – Ą M.*5?6*!= T56M. H!H.K

Motivation for bypassing NATs/Firewalls

The majority of 0-click remote-code-execution vulnerabilities require attackers some form of network

adjacency to the victim device -- either direct IP routing, or even layer 2 adjacency. This includes some of

the RCEs we discovered ourselves, such as URGENT/11 and CDPwn, but this is also true for other well

known RCEs such as BlueKeep and EternalBlue, for example. This is simply due to the fact that the

majority of 0-click RCEs are triggered by maliciously crafted packets that are sent to vulnerable services

that accept packets coming from the local network. These types of packets are rarely allowed to enter

the internal network, and are blocked by perimeter security devices such as firewalls and NATs.

In certain cases, RCE vulnerabilities can even be exploited with a single maliciously crafted packet.

CDPwn and URGENT/11 contain vulnerabilities that are an example of this. If an attacker gains the ability

to send a fully controlled packet to a victim device from beyond a network’s perimeter security

defenses, these types of single-packet RCEs may become reachable for an attacker on the Internet.

Many organizations put tremendous fate on their perimeter security defenses, in the hope that they will

prevent the penetration of their networks, and the devices within these networks. This leads to a state

where many devices are left unpatched, vulnerable to critical vulnerabilities that may be exploited by

specially crafted packets sent to them within the internal network. Thus, an attacker that is able to send

fully controlled packets within such networks has tremendous hazardous potential.

Understanding some of the elementary threats to the design of these perimeter security systems is what

led us to look at Ethernet Packet-in-Packet attacks in more depth.

Packet-in-Packet attacks in wireless protocols

The term Packet-in-Packet was probably first coined by Travis Goodspeed in 2011, when he discovered a

way to inject fully controlled layer 2 packets in 802.15.4 (layer 2 protocol used by Zigbee) and 802.11

(Wi-Fi), given the ability to send packets with partially controlled payloads. This sounds quite surprising,

and it relies on the fact that wireless transmissions are inherently unreliable, and this guarantees that bit

flips would randomly occur in transmissions, and eventually, the headers of the lower layers of the

packet may get corrupted.

When this happens, the receiver of such a packet can be fooled to interpret the payload of the packet as

an entirely new packet, including the previously uncontrolled low-level headers. An attacker that has the

ability to even partially control the payload of such packets may be able to inject fully controlled layer 2

packets.

.¨mf¥Az¢¦ – òāÿāÿ !K>6LË 6?*Î – ą M.*5?6*!= T56M. H!H.K

Preamble Sync Payload

�»�»���»�»���»�»���»�»�� �<�Â�� �»�A���‰�‰�‰��

�»�»���»�»���»�»���»�»�� �<�©�� �»�A���‰�‰�‰���»�»���»�»���»�»���»�»���<�Â���‰�‰�‰��

���©���Ã�»�½�‰�¼�À�‰�¿�����<�>�F�@�O�Š�D�I�Š���<�>�F�@�O�‹��

In the example above, YĄ is the syncword of the layer 2 protocol used by Zigbee (802.15.4), and when it

gets corrupted, the receiver will continue searching for another preamble and syncword inside the

packet. A crafted payload that contains these magic numbers will get interpreted from that point on as a

completely new packet.

A more recent Packet-in-Packet attack was devised in 2015 for non-encrypted Wi-Fi. The paper titled

6xtfb¨nzx !¨¨Ybu¦ zx ąýÿÎþþx >!* 3¥Ywf !ll¥flY¨nzx describes a method to target the MAC frame

aggregation feature of Wi-Fi access points to exploit Wi-Fi Packet-in-Packet.

Ultimately, a similar concept is used whenever Packet-in-Packet attacks are exploited in wireless

protocols -- partially controlled packet payloads, together with bit flips in the air, resulting in arbitrary

packet injection.

The concept of Packet-in-Packet isn’t new, but it was mainly explored in wireless protocols. In our case,

however, we wanted to explore methods to bypass firewalls and NATs, and these are connected to

wired networks. Does it even make sense for this to work on wired protocols?

To answer this question, let’s first dive deeper into the physical attributes of Ethernet.

.¨mf¥Az¢¦ – òāÿāÿ !K>6LË 6?*Î – Ć M.*5?6*!= T56M. H!H.K

Packet-in-Packet attack in Ethernet

Ethernet PHYs

The most popular Ethernet cables are copper cables that use either FastEthernet (which is 100 Mb/s)

and Gigabit Ethernet. These two PHYs have very different encodings on the physical layer.

In FastEthernet, the PHY encoding uses 5 bit symbols on the wire for every 4 bits of data:

4B5B Encoding table, as used by FastEthernet PHY (100Mb/s), from Wikipedia

As can be seen in the table above, the majority of the symbols are data symbols, and additional symbols

are used for control -- such as ¦¨Y¥¨ zk k¥Ywf and fxd zk k¥Ywf. Gigabit encoding is different, but it also

uses a similar approach for delimiting frames by using start and end of frame symbols.

The important thing to understand is that there isn’t any error detection mechanism at these PHY layers,

other than the inherent mechanism to detect invalid symbols (not all symbols are valid). So if, for

instance, a bit flip has occurred on the wire, the PHY layer will be able to detect this zxv± if the corrupted

symbol is now a non-valid symbol. One data symbol, for example, might get replaced with another data

symbol, if a bit flip has occurred on the wire.

.¨mf¥Az¢¦ – òāÿāÿ !K>6LË 6?*Î – ć M.*5?6*!= T56M. H!H.K

