
BLUEBORNE ON ANDROID – © 2019 ARMIS, INC.

BLUEBORNE
ON ANDROID
Exploiting an RCE Over the Air

Ben Seri & Gregory Vishnepolsky

Table of Contents

Preface 3

Android RCE Vulnerability in BNEP - CVE-2017-0781 3

Exploitation on Android 7.1 5

Target Object Selection 6

Loading the Payload into Memory 10

Grooming the Heap 12

PoC Exploit Code 16

Conclusion 16

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 2

Preface
Armis researchers Ben Seri and Gregory Vishnepolsky presented (October 21, 2017) a detailed

explanation of the Android Remote Code Execution vulnerabilities related to the BlueBorne attack

vector at the Hacktivity conference. This presentation included new information regarding the

vulnerability, as well as the exploit code itself.

This white paper will elaborate upon the Android RCE vulnerability and its exploitation, which are part of

the ​BlueBorne attack vector​, revealed in September 2017. BlueBorne is an attack vector by which

hackers can leverage Bluetooth connections to penetrate and take complete control over targeted

devices. Armis has identified 8 vulnerabilities related to this attack vector, affecting four operating

systems, including Windows, iOS, Linux, and Android. Following Armis discoveries, Google has issued a

patch to its Bluetooth stack in Android’s codebase (AOSP). This post contains additional details that were

not included in the ​Blueborne whitepaper​ and unveils the exploit source code. To fully understand the

underlying facilities that allow exploitation of the Android vulnerabilities, it is strongly suggested to read

the full technical whitepaper, especially the following sections: Demystifying Discoverability, SMP, SDP

and BNEP.

Future publications will explore in detail the BlueBorne vulnerabilities on Linux and the “Bluetooth

Pineapple” attack which affects both Android & Windows devices.

First let’s start with a quick recap on the Android RCE vulnerability in the BNEP Service:

Android RCE Vulnerability in BNEP - CVE-2017-0781
This vulnerability was found in the Android Bluetooth stack, called Bluedroid/Fluoride. Bluedroid is open

sourced, as part of the AOSP. It is important to note that it is entirely detached from the Linux Bluetooth

stack, called BlueZ. Bluedroid does not use any BlueZ kernel code available within the Linux kernel.

Instead, the whole stack is implemented in the userspace, running under the com.android.bluetooth

service.

The vulnerability lies within the following call to ​memcpy​:

UINT8 ​*​p ​=​ ​(​UINT8 ​*)(​p_buf ​+​ ​1​)​ ​+​ p_buf​->​offset​;
...
type ​=​ ​*​p​++;
extension_present ​=​ type ​>>​ ​7​;
type ​&=​ ​0x7f​;
...
switch​ ​(​type​)
{
...
case​ BNEP_FRAME_CONTROL​:

 ctrl_type ​=​ ​*​p​;

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 3

https://www.armis.com/blueborne/
http://go.armis.com/blueborne-technical-paper
https://android.googlesource.com/platform/system/bt/+/android-7.1.1_r44/stack/bnep/bnep_main.c#579

 p ​=​ bnep_process_control_packet ​(​p_bcb​,​ p​,​ ​&​rem_len​,​ FALSE​);
 ​if​ ​(​ctrl_type ​==​ BNEP_SETUP_CONNECTION_REQUEST_MSG ​&&

 p_bcb​->​con_state ​!=​ BNEP_STATE_CONNECTED ​&&
 extension_present ​&&​ p ​&&​ rem_len​)

 ​{
 p_bcb​->​p_pending_data ​=​ ​(​BT_HDR ​*)​osi_malloc​(​rem_len​);
 ​memcpy​((​UINT8 ​*)(​p_bcb​->​p_pending_data​ ​+​ ​1​),​ p​,​ rem_len​);
 ...

 ​}
...

Excerpt from Android’s BNEP message handler: ​bnep_data_ind

The above code flow is the process of handling incoming BNEP (Bluetooth network encapsulation

protocol) control messages. BNEP is a service which facilitates network encapsulation (usually IP based)

over Bluetooth. The BNEP_FRAME_CONTROL is the switch case for BNEP control messages. This specific

flow is an attempt to handle a unique use case in which the state of the BNEP connection may change

between one control message to the other. This can occur since multiple control messages may pass in a

single L2CAP message (using the extension bit). If for example a SETUP_CONNECTION_REQUEST is sent

as the control message, any following control messages might expect to be parsed while the code is in

CONNECTED state (and not its initial state which is IDLE). Switching to the CONNECTED state requires a

successful completion of the connection authentication process, and since this process is asynchronous,

the state in this context will still be IDLE. The solution for this problem is to parse the remaining control

messages at a later time - once the authentication process is complete, and the state of connection has

transitioned to CONNECTED.

For this purpose, the above code saves the remaining unparsed message for later use (in

p_pending_data​). However, a simple mistake lies in this code:

First the ​p_pending_data​ buffer is allocated on the heap, with size ​rem_len​. Later, a memcpy is made to

p_pending_data ​+ 1​ with the size ​rem_len ​. Thus the memcpy​ ​will overflow the buffer by

sizeof​(p_pending_data)​ bytes! One may wonder how such a mistake can go unnoticed, as it causes a

heap corruption ​every​ time this code is triggered. Additionally, this causes an inherent memory leak

since the previous ​p_pending_data​ pointer is never freed before another allocation occurs. It is very

likely that this code did never actually run, not during real world usage, and probably not even during

coverage testing.

The field ​p_pending_data​ is of type ​BT_HDR​, which is 8 bytes long. Moreover, ​rem_len​, which controls

the size of the allocation, is under the attacker’s control, since it’s the length of the remaining un-parsed

bytes in the packet, as well as the source for the memcpy (​p​) which points to the attacker-controlled

packet.

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 4

https://android.googlesource.com/platform/system/bt/+/android-7.1.1_r44/stack/bnep/bnep_int.h#131
https://android.googlesource.com/platform/system/bt/+/android-7.1.1_r44/stack/include/bt_types.h#197

The overflow can be triggered by sending this specially crafted packet in a BNEP connection:

type ctrl_type len Overflow payload (8 bytes)

81 01 00 41 41 41 41 41 41 41 41

Figure 1

The ​type​ field consists of the ​extension_present​ bit (which is set), and the ​BNEP_FRAME_CONTROL​ type

(01). The ​ctrl_type​ field is set to ​BNEP_SETUP_CONNECTION_REQUEST_MSG​ (01). This allows the flow to

reach the vulnerable memcpy call. It should also be noted that ​con_state ​is indeed not set to

BNEP_STATE_CONNECTED​ by default. Inside ​bnep_process_control_packet​, the 0 sized ​len​ passes all the

checks, resulting in ​rem_len​ being decremented properly. As such, the memcpy overflows the heap with

the overflow payload bytes.

Notably, since it’s possible to send an arbitrarily sized packet, the ​osi_malloc​ allocation size can be

controlled, since ​rem_len​ represents the size of the ​payload​ in the packet. This allows an overflow of 8

bytes on the heap following a buffer of ​any​ chosen size, which makes exploitation much easier.

Exploitation on Android 7.1
A method for exploiting the memory corruption vulnerability described above (CVE-2017-0781) is

presented below.

First, for the exploit to easily and reliably bypass ASLR, we’ll make use of a separate information leak

vulnerability in the Android Bluetooth stack (CVE-2017-0785), a detailed description of which is available

in the ​BlueBorne whitepaper​. The vulnerability leaks arbitrary data from the stack, which allows the

attacker to derive the ASLR’d base addresses for the ​text ​section of ​libc.so​ and the ​bss ​section of

bluetooth.default.so ​(the library which implements the whole Android bluetooth stack).

The exploit will attempt to launch an interactive connectback shell (out of the “com.android.bluetooth”

daemon) to an Internet IP controlled by the attacker. While it’s also possible to launch the shell directly

over a BNEP connection, we chose the former for the sake of simplicity. As such, the exploit will focus on

running bash commands via the system function (located in libc.so).

The daemon/service runs under Zygote, the core process-spawning daemon in Android, and is

surprisingly a 32-bit process (even though the OS and CPU are ARM-64). This makes exploitation far

easier, since it limits the ASRL entropy significantly, and in some cases makes it completely inert. More

importantly, the service is immediately and automatically restarted by Zygote once it crashes! This

provides the attacker with infinite attack attempts, and means that the reliability of the exploit only

affects the time required for a successful run.

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 5

http://go.armis.com/blueborne-technical-paper

To exploit the vulnerability, we chosen to perform the following research steps:

1) Find an object allocation code flow on the heap, which is easily triggerable, and in which the

allocated object contains a function pointer in the first 8 bytes.

2) Find a remotely triggerable feature/codepath that eventually writes controlled data into a

deterministic memory location where some of our payload data can be written, and later

addressed with an absolute memory address (not taking ASLR into account).

3) Find a way to remotely shape the heap. In our case, it’s necessary that the overflowing

p_pending_data​ buffer will be allocated immediately before the buffer from step 1, which

contains a function pointer.

4) Find a method for discovering relevant base addresses for ASLR bypass (already achieved using

the SDP vulnerability, CVE-2017-0785).

These steps were addressed one by one, and their documentation follows below.

Target Object Selection
The first step after we reproduced the overflow was to try and use it to crash the

“com.android.bluetooth” daemon with a “random” heap corruption. The exact buffer from ​Figure 1​ was

sent in a loop over an L2CAP connection to PSM 15 (BNEP):

810100 41414141 41414141
Figure 2

After between 500-1000 of these packets are sent (spanning only 1 to 2 seconds) the daemon reliably

crashes. The crash is visible when looking at the live “adb logcat” debug log. Examining the coredumps,

which are called “tombstones” on Android, has shown that statistically there is a very limited amount of

different crashes that occur. At that point we chose to focus on a particular crash, that occurs in about

10% of the time without any prior heap shaping:

F DEBUG : *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
F DEBUG : Build fingerprint:
F DEBUG : 'google/bullhead/bullhead:7.1.2/N2G47W/3938523:user/release-keys'
F DEBUG : Revision: 'rev_1.0'
F DEBUG : ABI: 'arm'
F DEBUG : pid: 7861, tid: 7895, name: bluetooth wake >>> com.android.bluetooth <<<
F DEBUG : signal 11 (SIGSEGV), code 1 (SEGV_MAPERR),​ fault addr 0x41414141
F DEBUG : ​r0 41414141​ r1 00000000 r2 415506a0 r3 00000008
F DEBUG : ​r4 41414141​ r5 00000001 r6 ec9912d8 r7 d95f28d8
F DEBUG : r8 00000000 r9 d95f24b0 sl f3cd3d78 fp ec9912e4
F DEBUG : ip d95f28d8 sp d95f24a0 lr f5342421 pc da06798c cpsr 000f0030
F DEBUG :
F DEBUG : backtrace:
F DEBUG : ​#00 pc 000d398c /system/lib/hw/bluetooth.default.so
F DEBUG : #01 pc 000e7a95 /system/lib/hw/bluetooth.default.so
F DEBUG : #02 pc 000e885b /system/lib/hw/bluetooth.default.so
F DEBUG : #03 pc 000470b3 /system/lib/libc.so (_ZL15__pthread_startPv+22)
F DEBUG : #04 pc 00019e3d /system/lib/libc.so (__start_thread+6)

Figure 3: Debug excerpt displaying the chosen crash

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 6

Examining the crashing code in IDA reveals the following:

Figure 4: Disassembly of btu_hci_msg_process function in which the crash has occurred

This is the function “​btu_hci_msg_process​” in the open-source code:

static​ ​void​ btu_hci_msg_process​(​BT_HDR ​*​p_msg​)​ ​{
 /* Determine the input message type. */
 ​switch​ ​(​p_msg​->​event​ ​&​ BT_EVT_MASK​)
 ​{
 ​case​ BTU_POST_TO_TASK_NO_GOOD_HORRIBLE_HACK​:​ ​// TODO(zachoverflow):
 // remove this
 ​((​post_to_task_hack_t​ ​*)(&​p_msg​->​data​[​0​]))->​callback​(​p_msg​);
 ​break​;
...

Figure 5: Excerpt from btu_hci_msg_process function (bt/stack/btu/btu_task.c)

The crash occurs on the ​p_msg​->​event​ deref, also seen in the first highlighted line in ​Figure 4​, where ​R4

register is ​p_msg​. The event field is the first field of ​BT_HDR​ struct. It appears that we have control of

the ​p_msg​ pointer in this flow, as is evident from the crash where ​R4​ equals 0x41414141. Thus we

control all the fields and payload in the handled message.

Even more interesting is the event type/case called ​BTU_POST_TO_TASK_NO_GOOD_HORRIBLE_HACK

(0x1700 in the IDB). Apparently for this ​event​ type, the first bytes of the ​data​ field (offset 8 inside

p_msg​) are a function pointer which is called with the very same pointer to ​p_msg​ as a parameter. This

will later prove to be ideal for calling the system function.

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 7

https://android.googlesource.com/platform/system/bt/+/android-7.1.1_r44/stack/btu/btu_task.c#117

At this point it’s noticeable that this ​p_msg​ parameter to the ​btu_hci_msg_process​ is indeed a pointer to

a datagram, just as the one we’re familiar with from the ​bnep_data_ind​ flow. Examining the flow in the

stackframes above, shows the following:

void​ btu_task_start_up​(​void​ ​*​context​)​ ​{
...
 fixed_queue_register_dequeue​(​btu_hci_msg_queue​,
 thread_get_reactor​(​bt_workqueue_thread​),
 ​btu_hci_msg_ready​, ​NULL​);
...

Figures 6: Registration function for btu_hci_msg_queue

void​ ​btu_hci_msg_ready​(​fixed_queue_t​ ​*​queue​,​ ​void​ ​*​context​)​ ​{
 BT_HDR ​*​p_msg ​=​ ​(​BT_HDR ​*)​fixed_queue_dequeue​(​queue​);
 ​btu_hci_msg_process​(​p_msg​);
}

Figure 7: Handler of incoming hci msgs in the btu_hci_msg_queue

This registers the ​btu_hci_msg_process​ as a handler for any messages inserted into the

btu_hci_msg_queue​. This queue is the incoming message queue for ​all​ incoming packets from the

Bluetooth controller which relies on the HCI (Host-Controller interface) protocol. This means that the

attacker’s own packets will pass through this queue for handling. The “horrible hack” that was shown

earlier in ​btu_hci_msg_process​, is actually piggy-backing this queue for a different type of messages,

which have a dynamic callback.

Examining further, we arrive at the actual buffer that’s being overwritten before this crash is induced:

void​ ​*​fixed_queue_dequeue​(​fixed_queue_t​ ​*​queue​)​ ​{
 ...
 void​ ​*​ret ​=​ list_front​(​queue​->​list​);
 list_remove​(​queue​->​list​,​ ret​);
 ...
 return​ ret​;
}

Figure 8: Overridden buffer (​list_node_t​)

The above ​list​ field is of type ​list_t​, and is a linked list of ​list_node_t​ structs. These are defined as shown

below:

struct​ ​list_node_t​ ​{
 struct​ ​list_node_t​ ​*​next​;
 void​ ​*​data​;
};

Figure 9: Definition of ​list_node_t​ struct

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 8

Not coincidentally, this buffer is exactly 8 bytes long. The ​osi_malloc​ calls that are used in the daemon

wrap Android’s libc ​jemalloc​ function. This allocator places similar sized buffers into the same “runs”,

which are contiguous memory areas. Since our allocated overflow-buffer (​p_pending_data​) is 8 bytes

long, like the ​list_node_t​ object, it is very likely that one will be placed before the other in the same

“run” on the heap.

In the crash presented above, a ​list_node_t​ node inside the ​btu_hci_msg_queue​ was overflown,

rendering its ​data​ pointer to 0x41414141. This ​data​ field is later cast to the ​p_msg​ parameter, and

passed to the ​btu_hci_msg_process​ handler.

Additional analysis has shown that in about 80% of crashes a ​list_node_t​ object is overflown on the

heap. This means that only minimal heap shaping will be required for this exploit, which will raise the

odds that the correct objects (unhandled ​list_node_t​’s from ​btu_hci_msg_queue​) are the ones being

overflown into.

This means that to exploit the overflow, we need to allocate many such ​list_node_t​ objects with holes

between them to raise the odds that ​p_pending_data​ will be allocated adjacent to such a ​list_node_t

and overwrite it using the 8 bytes overflow. This could be achieved by sending many identical overflow

triggering BNEP packets to the victim! This happens since each of these packets will arrive into the

btu_hci_msg_queue​ as ​list_node_t ​objects and later be handled by ​bnep_data_ind ​(in which

p_pending_data​ will be allocated, and the overflow will occur). The only remaining heap shaping that is

needed is to create holes on the heap.

Leveraging this into an RCE will also require knowing a memory address that will hold our additional

payload, before performing the overflows. This memory address will be written into ​data​ field of the

targeted ​list_node_t​ objects using our 8 bytes overflow. At that address, the following payload will be

placed:

“Horrible hack” event msg ASLR’d address of system payload

22 17 41 41 41 41 41 41 libc_system​ (4 bytes) 22 3B 0A bash
commands

0A 23

Figure 10

The ​libc_system​ address in the payload is placed at the offset of the ​callback​ field in

post_to_task_hack_t​ ​struct.

On successful exploitation this will be roughly translated into a call to system() with the following

parameter:

"\x17AAAAAA​....​";\n​ payload ​\n#...
Figure 11

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 9

To spawn a connectback shell on Android the “toybox nc” utility can be used. This is a slightly

non-standard implementation of the familiar “netcat” tool.

Loading the Payload into Memory
The payload in ​Figure 10​ needs to be placed into a deterministic location in memory. Examining the

source code of the Bluetooth stack shows that many data structures related to currently active

Bluetooth connections are stored inside global structs. That is, they are stored in the ​bss ​and ​data

sections in memory.

The offsets of global variables in the ​bss ​are constant per compilation of a shared object library. The only

non-deterministic element affecting the addresses of such variables is the ASLR section base.

Stored in these connection-describing structures are many pieces of valuable information, including the

Bluetooth device name, which can be set by the attacker on his/hers local system by configuring their

bluetooth controller in the following fashion:

Figure 12

This name is exchanged with the victims controller/host during the establishment of the low level ACL

Bluetooth connection (the underlying layer of L2CAP).

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 10

This is described in the Bluetooth specification:

Figures 13: Definition of the Remote device name

This is very convenient, providing 248 bytes of payload, under the condition of containing no NULL

bytes. The actual location of the device name in the global structures can be found ​here​:

typedef​ ​struct
{
...
tACL_CONN acl_db​[​MAX_L2CAP_LINKS​];
...
}​ tBTM_CB​;

typedef​ ​struct
{
...
BD_NAME remote_name​;
...
}​ tACL_CONN​;

Figures 14

The ​tBTM_CB​ struct is a singleton, and it is indeed located in the ​bss ​section of the Bluetooth daemon.

This has a deterministic offset in memory, as required.

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 11

https://android.googlesource.com/platform/system/bt/+/android-7.1.1_r44/stack/btm/btm_int.h#783

Grooming the Heap
Given the information uncovered in the previous steps, it’s clear that no heap-shaping is strictly

necessary. The desired exploitable code-flow can be triggered naturally (with about a single digit

percentage point probability). This is compounded by the fact that Zygote restarts the bluetooth service

quickly once it crashes. Regardless, this being an attack that requires physical proximity, from the

attacker’s perspective it would be better if it took less time for it to work. Therefore, it’s necessary to

improve the odds of the desired scenario occurring on the heap.

Ideally, we’d like to see the following situation on the heap, right before our overflow-inducing

p_pending_data​ buffer is allocated:

Here, the next 8-byte buffer to be allocated “sits” right before the target 8-byte “list_node_t” object. For

this layout to occur with a higher probability, it’s essential for the target “list_node_t” object to “sit”

right after the first hole on the “run” that’s going to be used for allocation.

While we’re able to create lots of of list nodes belonging to the “btu_hci_msg_queue” simply by sending

datagrams to the victim, this alone won’t be enough to create the desired layout. During the short

runtime of the attack, these list nodes would be allocated (and freed) in a particular order that will be

detrimental for our desired result:

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 12

First, the list nodes are allocated once packets are received. Then they begin being handled by the

bnep_data_ind​ flow. The allocated ​p_pending_data​ buffers, however, will only be allocated ​after ​the

last allocated list nodes on the heap, meaning no userful overflows will occur. This is so because in this

particular example there were no holes immediately preceding an unhandled ​list_node_t ​object. Holes

may be created once the handled list node objects are freed, but it’s unlikely that they will ​immediately

precede an unhandled list node:

If the newest ​p_pending_data​ on the left and an unhandled ​list_node_t​ are not allocated right next to

each other, the exploit will not succeed, and without any heap shaping it is more likely that a gap will

exist between them. Therefore, a strategy is required to create “random” holes on the heap, ensuring

that they’ll occur ​between​ allocated (unhandled) list nodes.

For this purpose, another queue, comprised of unrelated ​list_node_t​ objects can be used. For instance,

the queue of packets being ​sent​ back to the attacker. More precisely, it’s possible to make

bnep_data_ind​ transmit lots of “Command not understood” response packets, as shown in the following

code taken from “​bnep_data_ind​”:

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 13

https://android.googlesource.com/platform/system/bt/+/android-7.1.1_r44/stack/bnep/bnep_main.c#532

...
 if​ ​(​extension_present​)​ ​{
 ​...
 ​org_len ​=​ rem_len​;
 ​new_len ​=​ ​0​;
 do​ ​{
 ​ext ​=​ ​*​p​++;
 ​length ​=​ ​*​p​++;
 ​p ​+=​ length​;
 if​ ​((!(​ext ​&​ ​0x7F​))​ ​&&
 ​(*​p ​>​ BNEP_FILTER_MULTI_ADDR_RESPONSE_MSG​))
 ​bnep_send_command_not_understood ​(​p_bcb​,​ ​*​p​);
 ​new_len ​+=​ ​(​length ​+​ ​2​);
 if​ ​(​new_len ​>​ org_len​)
 break​;
 ​}​ ​while​ ​(​ext ​&​ ​0x80​);
 ​}
...

This codepath can be triggered using another specially crafted packet which is sent to BNEP, and

contains many “extensions” with unknown commands. An example for such a packet is shown below:

8109 800109 800109 800109 800109 800109 800109 800109 ...

Figure 21

This packet passes all the validations required to reach the above while loop. Then it consists of 3-byte

sequences, each representing an “extension”. Where the ​ext​ bit is set, the ​length​ of the extension is 1,

and the ​command​ byte is 9 (which is not an existing command). This causes

bnep_send_command_not_understood​ to be called for every such 3-byte sequence. In this flow,

eventually a response packet will be added to a transmit queue:

...
 fixed_queue_enqueue(p_bcb->​xmit_q​, p_buf);
...

It’s now possible to send such packet immediately before sending any of our overflow-inducing

datagrams. They will be handled by ​bnep_data_ind ​first, thus many ​list_node_t​ objects belonging to the

xmit_q​ will be allocated in advance. Since the ​xmit_q​ is dequeued and its list nodes are freed from

another thread, it will allow “random” holes to be constructed on the heap, as required. To illustrate:

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 14

In this scenario, when ​bnep_data_ind​ handles the overflow-inducing datagram that is pointed to by the

“handled node”, the new ​p_pending_data​ will be allocated in the 8-byte hole. The occurring overflow

will than overwrite the unhandled ​list_node_t​, completing the attack.

To recap, the steps for successful exploitation are:

1) Leak the ASLR address bases for the ​text ​section of ​libc.so ​and the ​bss ​section of

bluetooth.default.so​ (using the SDP info leak vulnerability).

2) Create the specially crafted payload, set it as the attacker’s Bluetooth device name, and

establish a new Bluetooth connection to the victim which will write the name/payload into the

victim's ​bss ​section.

3) Send a small amount of of packets that will cause many “Command not understood” responses

to be sent back in parallel to the next step in order to create holes in the heap.

4) Immediately thereafter, send as many overflow-inducing packets as possible in a loop to

overflow an unhandled ​list_node_t​ object from the ​btu_hci_msg_queue

Empirical testing has shown that an exploit following the above steps a 50% success ratio on the first

attempt. Each attempt takes a few seconds, so it’s possible to reach code execution in under half a

minute.

Post Exploitation
The bash commands executed by the exploit launch a connectback shell to an attacker controlled

machine. This runs with the privileges of the “com.android.bluetooth” service:

Output in an interactive shell launched by the exploit

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 15

This is a highly privileged position on an Android device. It allows access to the filesystem which includes

the user’s phonebook, documents, photos, etc., full control of the network stack (exfiltrate data, MITM

connections, bridge networks), and even simulation of an attached Bluetooth keyboard/mouse. This also

provides full control of the Bluetooth interface itself, enabling to use the victim’s device to spread the

attack further (making this attack vector wormable).

PoC Exploit Code
Related PoC code is available here: ​https://github.com/armissecurity

A full PoC exploit for Android 7.1.2 is available. It performs both the SDP memory leak and the BNEP

exploit described above. Please note that the exploit has many hard-coded offsets, that will only work

on the tested build (the build ID is specified inside the exploit code). Porting the exploit to other build

versions should be easy. Remotely fingerprinting the build version before choosing the right offsets for

an attack should be trivial using the SDP memory leak. Needless to say, this kind of weaponization was

not part of our research.

Conclusion
The vulnerability described above, and the related exploitation technique are not especially complex. In

fact, they demonstrate that protocols with manifest which are difficult to implement are susceptible to

bugs. A researcher armed with domain-specific knowledge of obscure features like BNEP, or deep

knowledge of Bluetooth pairing/authentication caveats, can tap into a relatively unexamined attack

surface.

Bluetooth implementers should rethink continued exposure of legacy services to the outside world. Like

with a personal firewall on a PC, there should be explicit consent from the user for accepting remote

connections, or for services to listen.

About Armis
Armis is the first agentless, enterprise-class security platform to address the new threat landscape of
unmanaged and IoT devices. Fortune 1000 companies trust our unique out-of-band sensing technology to
discover and analyze all managed, unmanaged, and IoT devices—from traditional devices like laptops and
smartphones to new unmanaged smart devices like smart TVs, webcams, printers, HVAC systems,
industrial robots, medical devices and more. Armis discovers devices on and off the network, continuously
analyzes endpoint behavior to identify risks and attacks, and protects critical information and systems by
identifying suspicious or malicious devices and quarantining them. Armis is a privately held company and
headquartered in Palo Alto, California.

armis.com

20190606.1

BLUEBORNE ON ANDROID ​— ​© 2019 ARMIS, INC. ​— 16

https://github.com/armissecurity

